Disaster Prevention Education Handout using Mathematics for Junior High School Students

Country

Age
Name

1．Root

When $x^{n}=a, x$ is defined the nth root of a ．
【example】 Second root（square root）of 4 is 2 ．
Third root（cube root）of 27 is 3 ．
Fourth root of 16 is 2 ．
－When n is an even number，
$a>0 \Rightarrow$ There are two nth roots，and they are expressed $\sqrt[n]{a},-\sqrt[n]{a}$ ．
$a<0 \Rightarrow$ There is no nth root of a ．
－When n is an odd number，
Regardless the sign of a ，there＇s one nth root of a ，expressed $\sqrt[n]{a}$ ．
【example】 $\sqrt{4}$ is the second root of 4 ，so $\sqrt{4}=2$ ．
（［Attention］When you think about the second root of a ，it is expressed \sqrt{a} ， omit the subscript of root， 2 ，not $\sqrt[2]{a}$ ．）
$\sqrt[3]{8}$ is the third root of 8 ，so $\sqrt[3]{8}=2$ ．
$-\sqrt{4}=-2, \quad \sqrt{-4}=$ No exist，$\quad \sqrt[3]{-8}=-2, \quad-\sqrt[3]{-8}=2$
Question 1 Find the value．
（1）$\sqrt{9}=$
（2）$\sqrt{-9}=$
（3）$\sqrt[3]{27}=$
（4）$\sqrt[3]{-27}=$
（5）$\sqrt[4]{16}=$
（6）$\sqrt[4]{-16}=$
（7）$-\sqrt[4]{16}=$
（8）$-\sqrt[4]{-16}=$
－Speed of Tsunami
The speed of tsunami $V(\mathrm{~km} / \mathrm{h})$ in the depth of water $h(\mathrm{~m})$ is given by the following formula．

$$
V=3.6 \sqrt{9.8 h}
$$

Question2 Find the value of tsunami speed for the following depth of water．
（1）The deepest depth in ；Lake Hamana： 16 （m）
（2）The deepest depth in ；Tokyo Bay ： 70 （m）
（3）The deepest depth in ；Toyama Bay ：1，200（m）
（4）The deepest depth in ；Suruga Bay ：2，500（m）

Height of Tsunami (Green's Law)
In one offshore, when the hight of wave is $H_{1}(\mathrm{~m})$, the depth of water is $h_{1}(\mathrm{~m})$, the hight of wave near the coast is $H(\mathrm{~m})$, the depth of water is $h(\mathrm{~m}), H$ is given by the next formula.

$$
H=\sqrt[4]{\frac{h_{1}}{h}} \times H_{1}
$$

At the Meteorological agency, the hight of wave near the coast is defined " $h=1(\mathrm{~m})$ ".

Question3 Find the height of wave near the coast for the following two situations.
(1) The water depth and wave height are $16(\mathrm{~m})$ and $1(\mathrm{~m})$.
(2) The water depth and wave height are $100(\mathrm{~m})$ and $2(\mathrm{~m})$.

2. Logarithm

When $a>0, a \neq 1$, and the following equation (1) was right, m is defined Logarithm in the base a. In adddition, m is expressed by the following equation (2).

$$
a^{m}=N \cdots \text { (1) } \quad m=\log _{a} N \cdots \text { (2) }
$$

The relation between index and logarithm

$$
a^{m}=N \Leftrightarrow m=\log _{a} N
$$

eg) $\quad 2^{2}=4,2=\log _{2} 4 . \quad 2^{3}=8, \quad 3=\log _{2} 8$.
$\log _{2} 32=5, \quad \log _{3} 9=2, \quad \log _{3} 27=3$
Question4 Find the following values.
(1) $\log _{2} 64=$
(2) $\log _{4} 16=$
(3) $\log _{5} 125=$
(4) $\log _{10} 10=$
(5) $\log _{10} 100=$
(6) $\log _{10} 10^{5}=$

The relation between energy from earthquake and magnitude (Richter scale)
When the energy from earthquake is $E(J)$, the magnitude is M, E is expressed by the following formula.

$$
\log _{10} E=4.8+1.5 M \quad \text { namely, } E=10^{4.8+1.5 M}
$$

Question5
Find the values of earthquake energy of $M 7, M 8$ and $M 9$. Then, find how many times the earthquake energy multiple when the magnitude increases by 1 and 2 .

When $M 7, E=$
When $M 8, E=$
When $M 9, E=$

3．Trigonometric ratio

In three sides of right triangle ABC （Hypotenuse，Adjacent，Opposite），the two line ratios of length from an acute angle A are written as $\sin A, \cos A$ ，and $\tan A$ ．These are defined like the next expressions． $\sin A, \cos A$ ，and $\tan A$ are pronounced as $\operatorname{sine} A, \operatorname{cosine} A$ ，and tangent A ．They are called Trigonometric ratio．

【example】
Trigonometric ratio of angle A and B of following right triangle are written in next values．

$$
\begin{aligned}
\sin A & =\frac{3}{5} & \sin B & =\frac{4}{5} \\
\cos A & =\frac{4}{5} & \cos B & =\frac{3}{5} \\
\tan A & =\frac{3}{4} & \tan B & =\frac{4}{3}
\end{aligned}
$$

【example】
Trigoronometric ratio of angle A and B of following right triangle are written in next values using Pythagoras＇theorem．

$$
\begin{aligned}
\sin A & =\frac{1}{\sqrt{10}} \\
\cos A & =\frac{3}{\sqrt{10}} \\
\tan A & =\frac{1}{3}
\end{aligned}
$$

Question6 Find the trigonometric ratio of angle A for following figures．
（1）

$$
\sin A=
$$

（2）

5
$\sin A=$

$$
\cos A=
$$

$\cos A=$
$\tan A=$

Question7 Find the trigonometric ratio of the following figures.

$\sin 45^{\circ}=$
$\sin 30^{\circ}=$
$\cos 30^{\circ}=$
$\cos 45^{\circ}=$
$\tan 45^{\circ}=$

$\sin 60^{\circ}=$
$\cos 60^{\circ}=$
$\tan 60^{\circ}=$

Question8 When you were looking out to the sea after an earthquake, the tsunami wave was appering at the horizon. The distance of the shore to the horizon is $4000(\mathrm{~m})$. Find the next values.
(1) When you were looking up to the height of the tsunami , the angle of elevation was 0.1°. Find the opposite of the height of tsunami at the horizon, by refering the following figure and table.

(※ Fig1. Tsunami wave height, angle and distance from shore to the horizon.)
[Attention]
You must run away from the sea after an earthquale as soon as you can to keep your life !

angle	\sin	\cos	\tan
0.1°	0.001745	0.999998	0.001745
0.2°	0.003491	0.999993	0.003491
0.3°	0.005236	0.999986	0.005236
0.4°	0.006981	0.999976	0.006981
0.5°	0.008727	0.999962	0.008727
0.6°	0.010471	0.999945	0.010472
0.7°	0.012217	0.999925	0.012218
0.8°	0.013962	0.999902	0.013963
0.9°	0.015707	0.999877	0.015709
1.0°	0.017452	0.999848	0.017455

(2) When the depth of water near the shore was $1(\mathrm{~m})$ and the depth of water at the horizon was $1000(\mathrm{~m})$, find the height of the tsunami when it arrived near the shore.

