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Bilinear Formalism in Soliton Theory

Junkichi SATSUMA
Department of Mathematical Sciences, University of Tokyo,
Komaba, Meguro-ku, Tokyo 153, Japan

Abstract

a brief survey on the bilinear formalism originated by Hirota is given. First, the
procedure to get soliton solutions of nonlinear evolution equations is discussed. Then
algebraic structure of the equations in bilinear form is explained in a simple way. A few

extensions of the formalism are also presented.

§1 Introduction

The bilinear formalism, which is originated by Hirota almost a quarter century ago,
has played a crucial role in the study of integrable nonlinear systems. The formalism
is perfectly suitable for obtaining not only multi-soliton solutions but also several types
of special solutions of many nonlinear evolution equations. Moreover, it has been used
for investigation of the algebraic structure of evolution equations and extension of the
integrable systems.

In this paper, we attempt to present a brief survey on the bilinear formalism and
discuss about several recent developments. Main interest is on the solutions of various
classes of nonlinear evolution equations. Section 2 is devoted to the explanation of the
procedure of obtaining soliton solutions. A few examples , which include the Korteweg-
deVries (KdV) equation, the nonlinear Schrodinger (NLS) equation and the Toda equation,

are given to show how we get the solutions. In this method, the variable transformation



is crucial and the transformed variable becomes a key function. We shall call it the 7
function. For multi-soliton solutions, it is written in the form of a polynomial in exponential
functions.

The 7 function can also be expressed in terms of Wronskian, Paffian or Casorati
determinant. In §3, by using this fact we show that the 7 functions of soliton equations
satisfy algebraic identities in the bilinear form. This result is a reflection of the richness of
algebraic structure which the soliton equations possess in common. Some of the indications
of the richness will also be briefly mentioned in this section.

In §4, we discuss about a few extensions of the bilinear formalism. The first one is
g-discrete soliton equations. It is shown that the Toda equation is naturally g-discretized
in its bilinear form keeping the structure of solutions. The second is the trilinear formalism
which gives a multi-dimensional extension of the soliton equations. The last is an extension
to the ultra-discrete systems. We show that the idea of bilinear formalism is also applied
to cellular automata which are the time evolution systems with all the variables discrete.

Finally in §5, we give concluding remarks.

§2 Hirota’s Method

The first paper on the bilinear formalism by Hirota [1] considers the KAV equation,
U + 6utg + Uggpy = 0. (2.1)

Following his idea, let us construct soliton solutions of eq.(2.1). First we introduce depen-

dent variable transformation,

u = 2(log f)zz- (2.2)

Then, assuming suitable boundary condition, we obtain the bilinear form,

Jotf — foft + frooaf — 4fzzafz + 3]‘21: =0. (2'3)

In order to write this equation in a compact form, we define an operater,

D*DMq - n - —\Y"a(x z t 4
et b (3:1: arx’ (Bt ot ( ’t)b( ’t)z _ t', (2 )



which is now called Hirota’s operater. The followings are a few simple cases:
Dgia-b=a;b— ab,,
Dia -b=ag.b— 2a.b; + abgy,
D3a b= azzzb — 3azzby + 305y — abyyy.

By means of this operater, eq.(2.3) is rewritten by
(D;Dy+ D2)f- f=0. (2.5)

In order to obtain soliton solutions, we employ a perturbational technique. Let us

expand the variable f as
f=1+efi+eEfr+Ef+--, (2.6)

where ¢ is a formal parameter (we take ¢ = 1 later on). Substituting eq.(2.6) into eq.(2.5)

and equating terms with the same powers in ¢, we have

Oe)  20:0:+ ) fr=LAH =0, (2.7)
0(62) L:fz = —(D:,;Dt + Dz)fl . fla (28)
O(e%) Lfs = —2(DsDy + D3)f1 - fo, (2.9)

If we start with f; = e™ in eq.(2.7), then we find that n; should be given by 3 =
p1(z — p3t) + ngo), where p; and n§°’ are arbitrary parameters. Furthermore, by noticing
the formula,

Dre®® . P = (o — B)"elathlz, (2.10)

we see that all the higher order terms of eq.(2.6) can be taken zero in eqgs.(2.8, 2.9, ---).
Hence f = 1+ ™ is an exact solution of eq.(2.5), which gives the one soliton solution of
the KdV eq.(2.1),

2
1
u=2(10g f)zz = Fsech?>{p1(c — pit) +n{"}. (211)

Since eq.(2.7) is linear in f;, we may take linear sum of exponential functions as a

starting fuction. Let us start with f; = e™ 4-e", where n; = p;(z— p?t) +nj(~0), D, r]](-o) € R.

For this function, eq.(2.8) is satisfied by

P1—DP2yo
fa= 6771+712+A12, etz — (£ 72 ,
(Pl +P2)



and again fs, f4,--- can be taken zero. Thus we have an exact solution,
f=1+4+em+em+ eMtm2tain (2_12)

In the physical variable u, this corresponds to the two soliton solution which describes a
collision of two solitons. The parameter A;, relates to the phase shift after the collision.

We can obtain a solution describing collision of any number of solitons in principal,
if we procede the perturbational calculation to higher orders. It is called the N-soliton
solution and will be given in §3 in an elegant form.

The bilinear formalism has been successfully applied to various classes of nonlinear
evolution equations. One of the important examples in one spatial dimension is the NLS
equation (2],

2
‘?;p + a—w +2[Y% = - (2.13)

For the complex variable 9, we introduce the variable transformation, ¢y = g/f with real
f. Then we obtain

(iD; + D2)g - f — %(sz - f —29g") =0,

where asterisk denotes complex conjugate. Since we introduced two variables f and g for

one variable 1, we may decouple this equation to yield

(iD;+ D2)g-f =0,
(2.14)
Dif - f=2gg".

Again by applying a perturbational technique,
f=1+éfatefa+-o, g=eq+egs+---,

we get soliton solutions.

In particular, the one soliton solution is given by

1 .
g:e"l, f=1+men+n,

where n = Pz + iP% + 5 P,n(®) € C. Rewriting P = p + ik for p,k € R and using
¥ = g/f, we have

¥ = psechp(z — 2kt — :1:0)93"{’“"'(’“2 "’g)t"'lm"(o)}, (2.15)



where z¢ is an appropriate phase constant.

Another example is the Toda lattice equation [3],

2

d
W IOg(l + Vn) = Vn—l - 2Vn + Vn+1. (216)

According to Hirota, this is the first equation which he applied the bilinear formalism to
obtain soliton solution, although the paper was published two years later than the one for
the KdV equation.
Let us substitute )
d
Vn = F lOg Tn, (217)

into eq.(2.16). Then assuming a suitable boundary condition, we have

d?7, drn,

WT,, - (7t--)2 = Tn4+1Tn-1 — Tz. (218)

It is noted that eq.(2.18) may be rewritten by
2 . 12 Dn
(D — 4sinh 7)7‘,l “Tn =0, (2.19)

where we have introduced the difference operaters,

eD"fn “Jn= €O =0n’ fafnr = fn+1fn—1, (2°20)
"~ with
€T f(x)=flw+e) or fn=fap. (2.21)

The one lattice soliton solution is given by
=1+ n=Pn—-Qt+7©, Q=sinh?P, (2.22)

or
Vo = Q%sech?s. (2.23)

The above three examples are all in two dimensions. The equations extended to
3 dimensions, the Kadomtsev-Petviashvili (KP), the Davey-Stewartson (DS) and the 2-
dimensional Toda (2D Toda) equations, have also been successfully treated in the bilinear
formalism [4-6]. The algebraic structure of soliton solutions becomes very clear in this

formalism, which we shall see in the following section.



§3 Algebraic Identities

The 2D Toda equation,
2

688 log(1+ Va) = Va1 = 2V + Vg, (3.1)

has been first presented by Darboux in 19th century. This is now well known as a generic

semi-discrete soliton equation. Equation (3.1) is reduced to
Da:DyTn *Tn = 2(Tn+lTn—1 - 7-3)7 (32)

by substituting
2
Vo= —
" 9z0y

and assuming an appropriate boundary condition.

log T, (3.3)

We now show that eq.(3.2) is nothing but an algebraic identity for determinants [7].

PROPOSITION 3.1
Equation (3.2) is satisfied by the following Casorati determinant:

1 1
OO
7(.2) f(2) f(2)
Tn(xay)= . n+l n+.N—1 ) (34)
:N N N:
r(l ) fr(z+; f'r(|+}\f—l
where 5 5
0) = ) ) = G) i=1.2.3.---
5l =1 G I =-flk  i=123N. (35)

Let us give a rough proof. For N = 1, substituting 7, = ,(, ) into eq.(3.2), we obtain

DDyt - Tn = 2(Tn,ey™n — TnaTny)

(aZf(l)f(l) 8f(1) af(l)
Ozdy 8z Oy
= —2(f M — r(‘1+)1 (1)1)

= RHS.



For N = 2, we first notice the identity,

ap a1 ap ag

bop b1 by b3

= O,
0 ay az as
0 b by by

for any entries a;,b;. Applying a Laplace expansion in 2x2 minors to the left-hand side,

we get
Go ai|laz az| (a0 az||a1 as o az||ar az| __ 0 (3 6)
bo by1|ibs b3 bg ba||by b3 bo bal|[by b2| )
which is called the Pliicker relation. If we simply write eq.(3.6) by

and have a correspondence,

Tp = n) f'(‘1+)1 < (0,1)
n = 1(12) f(i)l » 1)

then, by noticing the correspondences, 7, ., <= (0,2),7,y <= —(-1,1),7Tn 3y <
—(0,1) = (-1,2), Tn41 <= (1,2), Th—1 < (~1,0), we easily find that eq.(3.2) is equiva-
lent to the identity (3.7). For N > 3, we may employ the same idea to show that eq.(3.4)
satisfies eq.(3.2) or the equivalent indentity (3.7). For example, in the case of N = 3, we
can start with the identity,

f a ay 0 ax a3

g bo by 0 by b3

h co e 0 ¢ c3|_

0 0 ai f as as =0. (38)
0 0 b1 [ b2 b3

0 0 C1 h C2 C3

It is noted however that small modification is necessary to reduce eq.(3.2) to the identity
(3.7).

The soliton solutions of the 2D Toda equation are obtained from eq.(3.4) by mak-
ing a particular choice on the functions f,(,j ). The size N of the determinant in eq.(3.4)

corresponds to the number of solitons. The one soliton solution is, for example, given by

T = (D = p"ePTTIY 4 gt TV, (3.9)



where p and g are arbitrary parameters.
The Pliicker relation (3.6) is a key identity for soliton equations. Actually Sato [8, 9]
noticed that the bilinear form of the KP equation,

(4us — 120Uy — Ugzsz)s — SUyy =0 (3.10)

is nothing but the Pliicker relation and discovered that the totality of solutions of the
KP equation as well as of its generalization constitutes an infinite dimensional Grassmann
manifold. The class of equations is now called the KP hierarchy.

Let us briefly sketch a part of his result. Through the variable transformation, u =

(log 7)zz, we have the bilinear form of the KP equation,
(4D.D; — D; — 3D})r -7 =0. (3.11)

By applying the same tecknique as for the 2D Toda equation, it is shown that eq.(3.11) is
satisfied by the Wronski determinant,

fO g, M ... gN-15()
f@ g, @ ... gh-15)
r(z,y, ) =" : S (3.12)
FN) g ) L N1
where 5 52 5 5
a_yf(j) = Wf(j)’ af(j) = ﬁf(j)‘ (3.13)

For the purpose, it is convenient to introduce the notation [10], 7 = (0,1,2,---,N —
1). Then noticing » = (0,1,2,---,N - 2,N),7, = —(0,1,2,---,N —3,N - 1,N) +
(0,1,2,.--,N —3,N — 2, N + 1) and so on, we find that eq.(3.11) is essentially the same
as eq.(3.7), which means eq.(3.12) automatically satisfies the KP equation.

Shortly after Sato’s discovery, Date, Jimbo, Kashiwara and Miwa [11] extended his
idea and developed the theory of transformation groups for soliton equations. Moreover,
the 2D Toda equation has been shown to belong to an extension of the KP hierarchy [12,
13]. All these results make it possible to understand the soliton theory from a unified point
of view. For example, the relationship among the inverse scattering transform, Hirota's
method and the Backlund transformation is clearly explained by the infinite dimensional
Lie algebra and its representation on a function space.

As we see from egs.(3.4) and (3.12), the semi-discrete 2D Toda and the continuous

KP equations possess solutions with common structure. The Casorati determinant is the



discrete version of Wronski determinant. Moreover, the Casorati determinant (3.4) itself
is considered to be the Wronski determinant if we employ the linear relation (3.5) for the
entries. Actually both equations are the relatives because the KP is obtained by taking a
proper continuous limit of the 2D Toda equaton.

Then a natural question is whether there exists a full-discrete equation which has the
same type of solutions. One answer was given by Hirota[14]. The equation, which Hirota

called the discrete analogue of generalized Toda equation, is written in bilinear form by
m{l+1,m+ Dr(l,m) = m(+ 1,m)r,({,m + 1)

=ab{map1(l,m+ D11+ 1,m) — m{l + 1,m + 1)1, (I,m)}, (3.14)

where a and b are parameters related to the difference interval (see below). Since the
algebraic structure of this equation was studied by Miwa [15] shortly after Hirota’s finding,
we call eq.(3.14) the Hirota-Miwa equation.

As expected, the solution of eq.(3.14) is again given by the Casorati determinant. Its
explicit form is exactly the same as eq.(3.4). Only difference is the linear equations which

should be satisfied by the entries. In this case they are given by

MD O m) = D+ 1,m) - £ m) = 18 m), (3.15)

=9, m)—-—{f(’)(lm+1) FOm} = -9 (1, m). (3.16)

If we read I, m as z,y, respectively, and take a continuous limit, then we obtain the 2D
Toda eq.(3.2).

The Hirota-Miwa equation may be considered as one of master equations in soliton
theory, since we recover many of soliton equations by taking proper continuous limits [14].

Finally in this section, we comment on another class of solutions of the 2D Toda
equation. The Casorati determinant solution (3.4) is obtained by assuming the suitable
boundary condition in an infinite lattice. We may instead consider a finite lattice. If we
impose the boundary condition Vy = Vjs = 0 for some positive integer M, the system is
called the 2D Toda molecule equation. In this context, we call the infinite lattice system
the 2D Toda lattice equation.

The Toda molecule equation is reduced to its bilinear form,

DszTn *Th = 2Tn+1Tn—17 (317)




with 7_; = Tp41 = 0, by introducing the variable transformation (3.3). It is known [7]
that eq.(3.17) admits the solution,

flzyy)  Of - 3:?Ilf
o, f 00,f -+ 0P7'0,f
(@ y)=| ! 2, (3.18)
Op~f 0:057'f --- op~toptf
for n > 1 and 79 = 1, where the function f(z,y) is given by

M

Fl,y) = fe(@)ge(v), (3.19)
k=1

for arbitrary fi and gx. Since this solution is a Wronskian with respect to z in the
horizontal direction and with respect to y in the vertical direction, we call the determinant a
two-directional Wronskian. The proof is given by using the Laplace expansion or the Jacobi
identity for determinants. It should be remarked that the solution (3.18) is meaningful

only for discrete system since the discrete variable n determines the size of determinant.

§4 Extensions

The algebraic structure of determinant solutions discussed in the preceding section is
crucial to consider extensions of nonlinear integrable systems. In this section we present a

few examples which have been obtained based on the structure.
4-1 g-discrete Toda equation

As we have seen in §3, the solutions of the (continuous) KP, the (semi-discrete) 2D
Toda and the (full-discrete ) Hirota-Miwa have the same structure. Only the difference is
the linear equations which the entries of determinant should satisfy. This fact suggests that
if we can generalize the linear equations we may have another integrable system. In this
case integrable means that the equation admits the similar type of determinant solutions.
The g¢-difference version of 2D Toda equation is just such a case [16].

Let us introduce an operator,

b f (3,9 = LEW 2D, (4.1)




which reduces to ad/dz in the limit of ¢ — 1. Note that this operator reduces to the
original ¢-difference operator if « is taken to be 1.

The ¢-difference version of 2D Toda equation is given by
{6q2,z6q2,y7—n(x’ y)}Tn(ma y) - {6q2,z7-n ('77’ y)}{‘sqz,yTﬂ ("E’ y)}

= Tnt1(2, 4*Y)Tn-1(4%2,y) — T(d’z, ¢*y)7a(z, y). (42).

Again by using a Laplace expansion, we can show that eq.(4.2) admits the solution of

Casorati determinant type, eq.(3.4). The linear egs.(3.5) now become

Sq2 o f (2, y) = FE(z,9) (4.3)
and
82y f(x,y) = £, (2, y). (4.4)

It is noted that the g¢-discrete version of the 2D Toda equation is considered to be an
extension of Hirota-Miwa equation. The former equation is obtained by reading [ + 1 —
¢*r, m+1-¢%, a—(g—1z, b—(g—1)y in the latter.

If we impose a restriction on variables in eq.(4.2), we are able to obtain a reduced

system. Let us introduce a variable r by zy = r2. Then, for example, we have

{042,2™n(z, ¥) HOg2,y ™ (2, y)} = {4 ,r"'n(r)}z-

By using this kind of reduction, we obtain from eq.(4.2),

(g + @8 )7(r) - Talr) — {8gp7a(r))?

= Tp41(gr)Tn-1(qr) — Tn(qzr)Tn(T)’

(4.5)

which is considered to be the g¢-difference version of the cylindrical Toda equation. We
find that the solution for eq.(4.5) is given by the Casorati determinant whose entries are
expressed by the g-Bessel function.

Finally in this subsection, we remark that a ¢-discrete version of the Toda molecule

equation and its solution can also be constructed by extending eqs.(3.17) and (3.18) [17].

4-2 Trilinear Formalism



In order to prove Proposition 3.1, we have used identities for determinants. We have
seen that the Pliicker relation (3.6) is obtained by applying a Laplace expansion to the
determinants and that the 2D Toda equation is equivalent to the relation. One extension of
soliton equations is possible by following this simple idea. It is the trilinear formalism {18-
20]. By this formalism, we can costruct four dimensional nonlinear equations which admit
solutions expressed by Wronski or Casorati determinants. We here show the procedure for
the semi-discrete case [19].

First we consider the following identities for (3N + 3) x (3N + 3) determinant:

fmn—1 1 00
fmt1n-1 000
A 5 0 ' 0 Do
fm+N—2,n—1 0 0 0
fm4N-1,n-1 01 0
Frt M-t 00 1
fm,n.+N—1 1 0 O
fmi1neN-1 "0 0 0

0 A : | 0 =0,
fm4+N—2n+N-1 0 00
fm+N—1,n+N—1 ‘ 0 10
fm4NntN-1 0 01
fm,n+N 1 0 0
m+1,n+N 0 0 0

0 0 A :
fm+N—2,n+N 0 00
fmiN-1nsny 0 1.0
fm+N,n+N 0 01
(4.6)
where A is the matrix given by
fm,n. fm,n+l tr fm,n+N—2
fm+l,n fm+1,n+1 e fm+1,n+N—2
A= : : : . (4.7)
fm+N~—-2,n fm+N—2,n+1 e fm+N—2,n+N—2
fm+N—1,n fm+N—1,n+l te fm+N—1,n+N—2
fm+N,n fm+N,n+1 te fm+N,n+N—2

Applying a Laplace expansion in (N + 1) x (N + 1) minors to the left-hand side of



eq.(4.6), we have a trilinear form,

ay'rm,n.—l Tmn-1 Tm4ln-1
8mi,n Tm,n Tm+ln | = 0, (48)
aya:z'r'm,n aa:Tm,n a:::'7"m+1,n

where
fm,n fm,n+1 te fm,n+N—1
fm+1,n fmtin+r 0 fmala+N-1
Tm,n = . . . . ) (4.9)
fm+N—1,n fm+N—1,n+1 e fm+N—1,n+N—1
and f satisfies
0 0
a_wfm,n = fm,n+17 a_yfm,n = fm+1,n~ (410)

This result shows that the 7 function (4.9) in the form of two-directional Casorati deter-
minant is a solution of the four (two discrete + two continuous) dimensional eq.(4.8).
If we introduce the dependent variables v, ¢ by
T, T
"/Jm,n = log&"‘, d’m,n = IOg'Ma (4'11)
Tm,n-1 Tm+1,n

then eq.(4.8) is reduced to a coupled system,
az¢m,nay¢m,n az‘i’rn,+l,nay'l[)m+l,n

azay¢m’n = e¢m.n"¢m,n—l —_ ]_ - e¢m+l,n_¢m+l,n—l —_ 1 ’ (4'123)
az(bm,naywm,n 6m¢m,n—lay¢m,n—1
azay'l/)m’n - e¢m.n—¢m+l,'n — 1 - e¢m,n—l“‘d’m+l,n—1 —_ 1’ (4'12b)
with a constraint
¢7n+1,ﬂ - "/)m,n = ¢m,n—1 - ¢m,n- (4-13)-

Furthermore, if the reduction, ¢(z,¥)m.n = ¢ + Y)m+n: Y(@ Pmn = ¢Z + Vmtn-1,
is imposed, then eqs.(4.12) reduce to

agqn = —0.q, ( OzQn_1 63:Qn+1 ) 7 (414)

edn—4gn-1 — ] - edn+1—qn — ]

which is nothing but the relativistic Toda equation proposed by Ruijsenaars. Therefore,
eqgs.(4.12) is considered to be a 242 dimensional extension of the relativistic Toda equation
[21, 22].
In the continuous case, we have a hierarchy of trilinear equations [18],
pi(O)pi(=0)r  pi(8)pm(—0)T  pi(8)pn(-8')T
pi@Op(-8)r B @Opm(-D)7 P @O)pa(-D)7| =0, (4.15)
Pe(O)pi(=0)T  pr(O)pm(—0')T  pr(0)pn(—0")T



for arbitrary nonnegative integers i,j, k,l,m,n, where 7 is a function of z,,z2,z3, -,
Y1, 2,3, - -, 0,0 are defined by
6

= 3
6

— tol»—a
p— OOID—*

8
3025 )
o 18
— e o), 4.16b
3.111 20y’ 30ys’ ) ( )

respectively and p;,j = 1,2, -, are polynomials defined by

exp (i wn/\"> = ipj(x)Aj. (4.17)
n=1 3=0

The simplest case of eq.(4.15) (i =1 =0, = m =1,k = n = 2) gives a 2+2 dimensional

!

extension of the Brouer-Kaup system,
hs = (hy + 2hu),, (4.18a)

= (u® + 2h — uz)s, (4.18b)

and the solution is again given by a two-directional Wronskian [18, 23].

4-3 Ultra-discrete Systems

As was mentioned in §3, the Hirota-Miwa equation is one of the master equations, in
the sense that it reduces to the KP equation via the 2D Toda equation in the continuous
limit. Very recently we found a very interesting fact that there exists another limit, from
which we obtain cellular automata systems [24-26]. Since we obtain discrete systems in
which all the variables including dependent ones are discrete, we call it an ultra-discrete
limit (the name is due to B. Grammaticos). In this subsection, we explain how to get a
cellular automaton and its solutions starting from eq.(3.14) [26].

The Hirota-Miwa equation may be written in a symmetric form [14],
{Z1exp(D1) + Zyexp(D2) + Zzexp(D3)} f- f =0, (4.19)

where Z;(i = 1,2, 3) are arbitrary parameters and D;(i = 1,2, 3) stand for Hirota’s oper-
ators with respect to variables of the unknown function f. We here consider a particular
case of eq.(4.19),

{exp(D;) — 6% exp(Dz) — (1 — 6*) exp(Dy)} - f =0, (4.20)



or equivalently,

Fe=1,z,9)f(t+1,2,9) - 8%f(t, z—1,9) f(t,z+1,9) - (1= 8% f(t,z,y+1) f(t, 2,y —1) = 0.

(4.21)
If we introduce a variable S by
f(t,z,y) = exp[S(t,z,v)], | (4.22)
then eq.(4.21) is reduced to
2 2 2 8 2 2
exp[(At - Ay)S(t’x’y)] = (1 -6 ) 1+ m exp[(Az - Ay)s(t7$,y)] s (423)

where A?, A2 and A2 represent central difference operators defined, for example, by
AlIS(t,z,y) = S(t+1,x,y) — 2S(t,z,y) + S(t — 1,z,y). (4.24)

Taking a logarithm of eq.(4.23) and operating (A2 — A2), we have

2

(A2 - Az)u(t,x, y) = (AZ - A;) log <1 + 1—157 explu(t, z, y)]) , (4.25)

where
U(t, , Z/) = (AZ - A?/)S(ta , y) (4.26)

Ultra-discretization is defined by the following formula:
lim elog(l + ¢X/¢) = F(X) = max|0, X]. (4.27)
e—+0

It is noted that the function F(x) maps positive integers to themselves. Let us take an

ultra-discrete limit of eq.(4.25). Putting

_ vs(tvxay) 62 —6,
U(t,IIJ, y) - P 152 =e O/Ea (428)
and taking the small limit of €, we obtain the following equation:
(A2 - A2)o(t,z,y) = (A2 - A)F(v(t,,y) - b0), (4.29)

where we have rewritten lim v.(¢,z,y) as v(t, z,y).
e—=+40




Equation (4.29) is considered to be an (extended) filter cellular automaton. This

system is in 2 (spatial) and 1 (time) dimension and may take only integer values. Since

eq.(4.29) is an ultra-discrete limit of the Hirota-Miwa equation, we expect that it admits

soliton solutions. We here show that they are obtained also by taking an ultra-discrete

limit of those for eq.(4.21).

The one soliton solution of eq.(4.21) is given by
fit,z,y)=1+¢e", n=pz+qy+ wt,
where the set of parameters (p, ¢, w) satisfies
(e +e¥)—86%(e P +ef) — (1—-6%) (e +e?) =0.

Then by means of eqs.(4.22) and (4.26), we have

u(t,z,y) = log(1 + €"P) + log(1 + e"~P) — log(1 + e"*9) — log(1 + "~ 9).

Introducing new parameters and variables by
P=¢p, Q=¢q, Q=c¢w,

K = Pz + Qy +Qt, v.(t,z,y) = eu(t, z,y),

and taking the limit € — 40, we obtain

v(t,z,y) = F(K + P) + F(K — P)— F(K + Q) — F(K — Q).

The dispersion relation (4.31) reduces, through the same limiting procedure, to

|€2] = max({|P], |Q| + 6o] — max[0, 6o).

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

This solution describes a solitary wave propagating in zy plane at a speed without changing

its shape.

- The two-soliton solution describing a nonlinear interaction of two solitary wave is

obtained starting from that of eq.(4.21), which is expressed by
f(tvxa y) =1+e" +e™ + e"l1+"l2+012, i = P + Y + wit,

(e™¥i +e¥) —6%(e P +ePi) — (1 - 6%)(e™% +e %) =0, (i=1,2),

(4.35)

(4.36)



(emwitwz 4 gwr—w2) 62 (e"P1+P2 4 gP1—P2) — (1 — 52)(e—q1+qz + e —%2)

G2 _ _
e = (ewrtwz 4 e—wl—wz) — 52(em+p2 +eP1-P2) — (1 — 52)(eql+q2 + e—lh-th)

. (4.37)

The variable 6,2 stands for a phase shift. Again introducing new parameters and variables
by
P, =epi, Qi = eqi, 4 = ew;,

Ki = Pix + sz + Qit’ (Z = la 2)7 ’Ue(t,.'ﬂ, y) = GU(t,x, y)a 912 = 5012?

and taking the same limit of £ — +0, we have

v(t,z,y) = max{0, Ky + P1,Ks + P, Ky + Ko + Py + P + ©15]
+ max[0, Ky, — P, K2 — P2, K1 + K2 — Py — Py + 649
— max{0, Ky + Q1, K2 + Q2, K1 + K2 + Q1 + Q2 + ©12]
— max[0,K; — Q1,K2 — Q2, K1 + K2 — Q1 — Q2 + ©129), (4.38)

where
14| = max[|Pi[, |Q;| + 6] — max[0,00] (i=1,2), (4.39)

and
max [@12 + max[O, 00] + |Ql + Qzl, max[O, 00] + |Q1 —- le]

=max[O12 + |PL + P2[, 012 + 0o + |@1 + Q2 |PL — P2, 60 + |Q1 — Q2]]. (4.40)

The following figure demonstrates a snapshot of the two-soliton solution (4.38) at
t = —4 for P1 = 6,Q1 = 1,P2 = 6,Q2 = 5.

15 000000000000004200000000000000
14 000000000000003300000000000000
13 100000000000002400000000000000
12 110000000000001500000000000000
11 011000000000000500000000000000
10 001100000000000510000000000000
9 000110000000000420000000000000
8 000010000000000330000000000000
7 000011000000000240000000000000
6 000001100000000150000000000000
5 000000110000000050000000000000




4 000000011000000051000000000000

3 000000001100000042000000000000

2 000000000100000033000000000000

1 000000000110000024000000000000

0 000000000011000015000000000000
-1 000000000001100005000000000000
-2 000000000000110005100000000000
-3 000000000000011004200000000000
-4 000000000000001003300000000000
-5 000000000000001102400000000000
-6 000000000000000111500000000000
-7 000000000000000011500000000000
-8 000000000000000001610000000000
-9 0000000000600000000520000000000
-10 000000000000000000431000000000
-11 000000000000000000331000000000
-12 000000000000000000241100000000
-13 000000000000000000150110000000
-14 000000000000000000050011000000

y/x [111111111]]]/0123456789*****x

At the bottom of this figure, negative values of z coordinate are expressed as “/” and

“*" for convenience sake.

values greater than 10 are expressed as
It is noted that N-soliton solution is obtained through the same limiting procedure.
It is also remarked that we can costruct other types of not only integrable but also nonin-

tegrable cellular automata by using the ultra-discrete limit on several full-discrete systems.
§5 Concluding Remarks

In this paper, we have given a brief survey of Hirota’s bilinear formalism and pre-

sented a few extensions. By virtue of the advantage of obtaining explicit solutions and



of making the algebraic structure of equations clear, there are many other applications of
this formalism. Here we just mention only one example, the Painlevé equations.
It has been shown by Okamoto [27] that the explicit solutions of Painlevé equations

are expressed in terms of the 7 functions. For example, the Painlevé II equation,
Wy — 2w + 27w + o = 0, (5.1)

admits a solution for a = —(2N + 1),

_ d TN+1
W= (log o ), (5.2)

where 7y is given by an N x N two-directional Wronski determinant of the Airy function.
Recent finding of discrete analogue of the Painlevé equations [28] gave rise to a problem
whether there exist corresponding solutions for the discrete case. An answer was given by
the bilinear formalism. For example, it has been shown through the formalism [29] that

the discrete Painlevé I1 equation,

(an + B)w, +v

e (5.3)

Wp41 + Wp-1 =

admits particular solutions written by Casorati determinants whose entries are the discrete
analogue of the Airy functions.

This example as well as the results in the preceding sections indicates that the bilinear
formalism would be one of the most powerful tools to treat discrete problems, which the

author believes to be an important subject in 21st century.
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M ERREM % O OHEBMEOROFEL ZO—EHIZONT

EX 8Z (REAHE)
hkk B (RABE—REFH)

1.Introduction

FRICBVTE, FFREHFENER LM% b OHIFR S17: Phase Field FRADBOFE
E—BHIIOVTEZDLRDY AT AR R TIDOOME u - 0, T} - L*(),w : [0,T] =
L*(Q),v:[0,T) —» L*(T) kKo X ;

wtw—Au=f(t,z) inQ:=(0,T)xQ, (1.1)
vwg -~k Aw+pw)+g(w)du inQ, (1.2)
u=v ae onX:=(0,T)xT, (1.3)

Ou  Ov
%+c§+h(v) =0 onX, (1.4)

ow
% =0 on 2, (15)
u(0,-) = up, w(0,") =wp in Q, (1.6)
v(0,-)=vp onT, (1.7

SIZT0<T < 400, UIRDHLPLHERTE LD RVOFERER; vk, c RIEEEH; B
R x R LOBKEFFER,; g,h 13 R L0 Lipschitz MY, fid Q L5 s5h-%,
ug, wo, N MHMBTH %, ZIITLIZBIF 2 BEEBFADOHAI % ET. Los 254
(ll)N(17) % CP=CP(’U,0, Wy, Uo) ’G\i‘g_: bt L’.?‘Z) o

HEBRR AT 5ET VD 1DTH 5 phase field /7#3\i Caginalp [4], Fix[5], Visintin[11),
Kenmochi[9] 2 &I & o TEEICEFREEh T v 5,

BREM (1.3),(1.4) 2 RABIE w BT 5485 3 TEH R LM 2 7- A0l RAERIEIC
DT EDBYE —RIZHFET BT DR ENTV 5, (Damlamian-Kenmochi-Sato[7))

BREM(14) D L2, BERRIZBVCRMBBOBREt BT Mo 0BRSS
ENFRRERRMA LS, COBREAE OO 2R T 7 7 & BEICHL Tid Aiki[1],[2] T
BROFE, £O—FE. BOBHMNEEYE. BHROREOEBEIIOVTHEIR TV S,

FRTiE. ¥ AT A CP(ug, wo, vo) PRDFIEL —BHICHT 2 RERIZIOVTHRN S,

FIRTHCV A ML EICBT 5 HEIE Brézis(3) 12 L 50D TH 5,

2.Main result

FiRrzBL TROEE (8),(f),I) 2 BHET %,
(8) R LOBIET & RmMBEMAL TR CHHFEL T,
B=088 #»2 B(r)>Cir* foranyr € R,
ZIT. BRBDEMYEFET,



(f) feL*0,T;L}Q)),
(I) Ug € LZ(Q),wo € L2(Q),Uo € L2(F)

ROEHE 5,
V=HY(Q), W=LQ)xL*D),

Ay, 2) =/9Vy-Vzda: Y,z €V,
(¥, 2)L20) = /Qyzdm Y,z € L*(Q),
(¥, 2) L2y = /Fyzdl" y,z € L}(I),
Zz=/nzdz+c/[‘zdl" z€V,
TIT, EEBciE(13)DbDEFRLTH S,
(y,2)v = Ay, 2) + ZyZz y,z€V,

(ly, o), [z, 2e])w = (v, Z)L2(Q) + (yr, ZF)L2(r) v, ur), 2, Zr] eWw.

V,W iz FhERAR (-, )y, (-, )wic & T Hilbert ZRic %2 %, W & W OB 22/ % Fl—
BL. VOIREME V*TERTZEILT S, Fv : Vo V2 I0HEEREL 75, ie

(FVy7z)V = A(yv Z) +ZyZz y,z€V,

T T, (-, )vid V0 E V D duality pairing % Yo VIZRD & ) A% E#Y 5 & Hilbert
ZEMIZR 5,
@2 =" Iy (= (& Foly'ly) 2" eV
|- lvs ] - lwo | - - CERERDEMD /N A% ET T EI2T B,
BHEE:VoWERDLHIIED S:

Ez:=[z,cz|[r] z €V,

TIT. EEBciE(13)DbDEFLTHB, EDOEB RE) I W ORBELHBSEMTH
D, ERRTEE2ESERRZETH L, COLE | EOFGHERAE E*IZ 2V TROERIK
YA R
(E*[2, 2lr],mdv = (z,m) 2@ + c(zr My [2,2r] € Win €V,
ZIT, EEBciR (13)DbDLFELTH 5B,
RIZ CP(ug, wo, vo) PRDEHEL B 5;

Definition 2.1. 320 u:[0,T] - L2(Q),w :[0,T) = L3(Q),v:[0,T] — L% () DM

{u,w, v} BRDEM (1)~(4) ZH72T L &, {u,w,v} & [0,T] LD CP(up, wy, vo) PHETH
LS,



(1) w€ Cu(l0, T} LX) N L2(0, T; V) 0 L3.((0,T): V),
w € C([0, T}; LA(S)) N WE2((0, T); LA(Q)) N L2(0, T; V) N LS (0, T V),
v € Cul(0, ] LA(T) n WEH(0, ) 12(),
E*[u+w,v] € WE((0,T); V*), B(w) € LY(Q), u(t, z) = v(t,z) a.e. on %,

(2)
(%E*[u(t) +w(t),v(®)), 2)v + A(u(?), 2) + (h(v(t)), 2) 2y = (f(t), 22y (21)
for all z € V and a.e. t € [0,T],

() QLwn/=btZAatef(w) &ibE e L, ((0,T); L3(Q)) L T,

"(?ﬁw(t)’ Mz + £Aw(t),n) + (€(), )2 + (9(w(t), M2y = (F(t), Mz (2.2)
for all n € V and a.e. t € [0, 7],
(4) (0, 7) = up(z), w(0,z) = wo(z) for a.e. z € Q and v(0,z) = vo(x) for a.e. 7 € T.
DFoL) 2RO —EHICET 28R 8.

Theorem 2.1. 0 < T < +oo. &% (8),(f),(I) B3O & &, CP(ug, wo,v) P [0,T] £
D {u,w, v} I —BICHFLET 5,
LT Ot 0EBOERE MEI R,

3. —EMOEA
{ur, wi, mi}, {uz, wa,v2} & FNE I CP(uyp,w10,v1,0), CP(uz0,wa0,v20) PRELT B L,
(2.1), 22) A»oRkD 2% 8 5;

(%(EI (t) = E3(1), 2)v + A(wa(#) — w2(t), 2) + (h(v1 () — h(va(t), 2) 12y =0 (3.1)

for all z € V and a.e. t € [0,7],

d
(dt(wl(t) wa(t)), M) L2c) + KA(wi(t) — wa(t), n) + (62(t) — &2(8), M) L2y + 52)
+(g(w1(?)) — g(wa(t)), M) L2y = (wa(t) — u2(t), n) L2y

forallpe V and ae. t € [0,T),

722U, Ei(t) = E*ui(t) + wit), vi(t)],&(2) € Bwi(®)(G = 1,2) £ FBo 2T, 2z =
FyUEL(t) — E3(),n = wn(t) — wa(t) E FNZEN (3.1),(3.2) RIAAL VL OhDOEREIT
) ERDAEREES;

Lemma 3.1. 0 < T < +oo. &M (B),(f),(DHFEDLoE &, {us,w;, v} =1,2) % Fh



Fh CP(uio,wio,’U,‘o) ('l = 1,2) o)ﬂk TZ) & 3 N/ GCﬂEﬁL&V‘EEﬁCgﬁfﬁEL’C%@Z‘
FXEWT;

t t
IB3(8) = B O +lur(®) - wa®)Eaey + [ 101(r) = 0a(r) Baeydr + [ 1ua(r) = wal) Bagayitr
< Co{|E*[u1,0 + w10, v10] — E*[ugp + wap, va,0)|% + Jwio — wz,oﬁz(n)}

for all t € [0, T).
Proof of Theorem 2.1.(uniqueness)  Lemma 3.1 & YRS A, O

T, BHEERE R ML TRO—EM% & ( i Damlamian[6] (2 & %,
Damlamian-Kenmochi-Sato[7), Aiki[1],(2] b itk FETHRO—EHLRL T 5,

4. TFEHEDIR
CP(ug, wo, vo) PEDFIEL RT RN, ROMBEEEL B RD YV AT L%k AR72T3D20OM
Bu:[0,T) - L*(Q),w: [0,T] = L2(Q),v: [0,T] = L*(T) %KD &;

u +wy —- Au= f(t,z) inQ, (4.1)
vwg — K Aw+ B(w) + §(t,z)du inQ, (4.2)
u=v ae. onlx, (4.3)
%+£ﬂdum—0mz (4.4)

on ot e T '

ow

I = 0 onZ, (4.5)
u(0,+) = ug, w(0,-) =wp in Q, (4.6)
v(0,-) = v on T, (4.7)

CIZT, R QLDEZON/BEAMIS EDEZ SN MK TH B, LDV AT A (4.1)~(4.7)

% CP1=CP1(uo, wo, vo; §, h) TETZ & i2T %, D CP1 DEDEFEML Schauder DAREY

HEHPAVCCP OBOFEELRT. £7. CP1OBOFEL —EHIZOVWTHERS,
AR uo, wo, vl I RDEM (I 2 A= THDET B,

(I) up € V,up|r = vp, wp € V with B(wo) € L1 ().
Kbl G RIRDEMEATIDOLT B;
(9) § € L*(0,T; L*()),
(h) h € L*(0,T; L*(T)).
KIZ CP1 (o, wo, vo; § ) DREDEHE B~ 5;

Definition 4.1. 3 2D v [0,T]) - L}(Q),w:[0,T) = L%(Q),v: [0,T] —» L* () DM
{u, w,v} BERDEM (1)~(4) & 723 L & {u,w,v} % [0, T} LD CP1(ug, wo, vo; §, h) DR
ThobEVS,



(1) u e L®(0,T; LAQ)NL3(0, T; V), w € W2(0, T; LA(Q))NL®(0, T; V), v € W'2(0, T; LA(T)),
E*lu+w,v] € WY2(0,T;V*), B(w) € LY(Q), u(t,z) = v(t,z) a.e. on T.

(2
(LB fu(t) + we), o0, v + At),2) + B, D = (O Ay (48
for all z € V and a.e. t € [0,7],

(3) Q Ewn7/z5k AL e f(w) & BE € L30,T; L*(Q) HFEL T,
V(%w(t), Mrre) + cAw(t), n) + (€@), 012 @) + (G(), M2y = (F(), N1
for all p € V and a.e. ¢t € [0,T),
(4) u(0,7) = uo(z), w(0, ) = wo(z) for a.e. z € Q and v(0, ) = vy(z) for a.e. z € .

kb:\ CPI(Uo,wO,’U();g,i'L) @ﬁ@ﬁ&%ﬁij—fib‘:ﬁf:&mﬁ%ﬁ%gkj—%o ED0
DEESE LT,

Lemma 4.1. 0 <T < +oo. &} (8), (), (I)"FBYLDE T %o {u, w,v} % CP1(uo, wo, vo;
Gh)DRETBL, EBD L € [0,T] 18 L TROBRAHK ) L,

/ﬂu(t, x)dx-}-/nw(t, x)dz+c/l:v(t, z)dl’

= /Quo(x)dx+/nwo(x)dx+c/rvo(:c)d1"+/ot/nf(T, x)dxdr—/ot/rﬁ(r,x)df‘dr.
Proof. ¥R (4.8) 2BV T2z=1¢ LT, RH[0,¢ THRETHIZ LV, o

X0, T LoBBaZRDL HICEHET S;

a(t) = I—QI:_CH‘I{/Q uo(z)dz +/Qwo(x)dx + c/rvo(z)dl‘+

+ / t / f(r, z)dzdr — / ' / h(r,z)dldr} te o, T),

122U L IQUBQOBEK, T RTOEREE T ZDat v 5L Lemma 4.1 £ Y CP1(ug, wo,
vo; §, h) DIR {u, w, v} 12DV TROERAL Y L0,

/Q(u(t, z) + w(t,z) — a(t))dz + c/F(v(t, z)—a(t))dl =0 te(0,T).
CITROL ) ZHBERY, Y. 252 5,

Yii={z€V;Z2=0}, Y;:= {[z,ZF]GW;/dex+c/rzpdl"=0}.




V& /W b |zly, i= V2|l & D Banach ZZRIC%2 5, YT YiOBXZEM% KT
Fy, Y1 = Y& B ERE L 35, ie.

(Friy, 2)v, = A(y,2) y,z€ Y,

ZZT, {,)y B Y E YO duality pairing 2 KT o YHIIRD & 5 2AE%E E&ET 5 & Hilbert
ZERNC R B
W2 )y = (W ' 2 (= (& FRly'n) v 2t e Yy
Y2ld W LRI V\ﬁjﬁa: &£ V) Hilbert Z2fiZ7% %,
Py, : Vo Y,E: V192 FRENROEIIIERT 5o
Zz
Y

oL E, EOBREREENZ DOV TROERNBILT 5;

Pyz:=2z z€V, Ez:= [2,cz|r] z €Y.

(E*[z, zr), mvi = (2,m) 2@y + c(zrs )12y (2, 2r] € Yo, m € 14,

IIT, EEM R (13)DLDLFEL THB, R(E) TEDERE KT
ROZEPREIND,

Proposition 4.1. 0 < T < 4oo. &M (8), (f), (I)) BEILDET B, {u,w,v} %
CP1(ug, wo,vo;d, h) DIRE T Ho TDE & q(t) == u(t) +w(t) — a(t), qr(t) :== v(t) — a(t),
Qo = o +wo — a(0), gro := vo — a(0) L BE#Z % & CP1(ug,wo, vo; J, h) D {u, w, v} IZR
DY AT I (4.9)~(4.15) DR {q,w,qr} EFMETH 5;

E*[g,qr) € WY (0, T; YY), (4.9)

lg,qr) € L=(0,T;Y2), g€ L*(0,T; Y1), (4.10)

w e WY2(0,T; L*(Q)) N L®(0,T;V), B(w) € L}(Q), (4.11)

%E*[q(t), gr(t)] = =Fy, Py, (q(t) +a(t) —w(t)) + f* in Y]" ae. t € (0,T), (4.12)

V%w(t) — kA w(t) + Bw(t)) + §(t) 3 q(t) + a(t) — w(t) in L*(Q) ae. t € (0,T), (4.13)

q(t,z) — w(t,z) = gr(t,z) a.e. on I, (4.14)
?9—: =0 onX, (4.15)
q(0) = go, w(0) = wp in L*(2), gr(0) = gro in L*(T), (4.16)

2T, (), mv = (F@),miae) — (h(t),m)2qy N E V1.

EDY AT 4 (4.9)~(4.16) & CP2=CP2(go, wo, qro; §, h) TET I LI2T 5,
BERZEH X =Y x L2(Q) ERD & ) LA (-, ) xI< & o T Hilbert ZRIZ % 5;

([y1, 2], [21, 22]) x = (1, 20)vy + v (Y2, 22) L2(02)-




COERZEM X EOBETHERMBEBAEEL € [0,T)IIHL TRD L I IZEET 5;

3107+ alt) = Wl + Slar +a(OlEaqy + HIVulisg + [ Hw)de

¢'(U) = if U = [¢*,w] € R(E*) x H'(Q) with B(w) € L'(Q) and [q, ¢r] = E*~'¢",
400 otherwise.

T5L,

Proposition 4.2. {g,w,qr} % CP2(qo, wo, qro; §, h) @ﬁﬂé'ﬁ"éo U(t) = [E*[q(t), ar (2)], w(?)],
U(0) = [E*{qo, qro), wo] LEBEMR B E . CP2(qo, wo, qro;d, h) DR {g, w,qr} RROBR K&
N (4.16) ~ (4.17) DR U L FMETH 5 ;

%mwmﬂwm:wmmewemn, (4.16)

U(0) = [E"[go, qrol, wa), (4.17)
722U F*(t) = [f*(t), —15(¢)] € L*(0,T; X).

SDF AT DRBEFENIRFEED BR8] L VBOFEL —BEMIREND, fEoT.

‘Proposition 4.3. 0 < T < +oo. &Mk (8), (f), (I)'HHEOVLDOEF D, ¥ A5 4
CPI(UO’WO: Uo;’!}jl) o)m {u,w,v} ‘iuﬁL:ﬁETéo

Proof of Theorem 2.1.(existence) MIABMBA KM (I 2 A7 T L &ix, L2(0,T; L*(Q)) x
L2(0, T; L2(I")) a)ﬁﬂzzl&%{sﬁ: MEAV ALY %%B %EU:‘\ % [E,ﬁ] €B L:*‘TL CPl(Uo,’on,’Uo;
9(@),h(v)) <o DL X [w,7) € B % CP1(up, wo, vo; g(@), h(v)) DIRED [w, v] (X XI5
SELERSWEBHSL BAOEKERTH S EMbhP b, T T, Schauder DARE 5
Bho SETBREHT. TP CPOBRTH 5,

BB St (D) 2 BT L &1, MHIREDSRME Q) £ A7 TELE S BRT 2 & 2
DBRBEA CP DRIC R o TV BT EAREND, o
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FERMRICHTIXBHT NS 72 —-DFEICOWNT

REERRE., 1LIEFHE (T¥EK - BHHE)
RFFEE (TEK - BEFEH)

1. ¥

KeNV ZEH H ECERSNBMEKEEEN TSI o OB 0t 1o LR 2N 738
EERAEX
u'(t) + 0ot (u(t)) + g(u(t)) 5 f(t) in H, ¢>0, (1.1)

¥ERL, ST W' =%, gu) 3V STy UEBE L, f % forcing term £ T 5, ZOFERIL.
FBEREHTh B,

B £ % +oo EL7E &, ¢ A%, HDBMEMT4EGEBY o™ (& 5 WY 7% EIHETIURL . f@t)y »e
VANV ZEMHDH% 13 [ 12h5BURBRTIORT 5 LREL 2L &, (1.1) OO TR oL
TEET L, (1.1) OBBABERIZ, HEHFE

u'(t) + 9p™ (u(t)) + g(u(t)) 3 F°, t>0. (1.2)

Thab,

SITiR [RARR (1.1) OMOMELEBIL, AER (12) KL VEMSTI R LA CE 242 o0,
F#Eﬁ%unuﬁTakmm?b57&—&#&?5@#‘#E#s&aw‘Em%ummkﬁm7b
Tt DBREBED LI oTVAER ] WS EIZOWTHRT S,

BSEETIE, EHIR D(p!) P HREAET BIREBR (1.1) £48 ). LA LIRS 6 HCit. EHE D(o)
PRMEFL 2 VREEER D, REROITIOBHE, skew-product flows ¥ FIEL TABEGT k52 & —
ERBT LI LN TEDDNLTH D, (cf. [1]). £ TH6MTH, EBC skew-product flows % MR L 3
HE® (1.1) iR BRBET 52 8 —DOFEL FTTo

2. K&
UFo&4*RETS,

(A1) {¢50<t<+00} * H LTERINI-HENTEEHEOKE L. Ot T ot DEMFERT;
(A2) 37 A=% r € Ry :=[0,+00) & D Ry ETEH SN M EHEHHOE {a,; r > 0} & {b,; r >0}
PHHEELROEE (al) & (a2) % W73,
(al) a; € L'(Ry) N L3(Ry), b, € L'(Ry);
(a2) EEDOZEH r > 0. EEOM s,t € [0, +00] 2 OHEED z € D(p®); |zlg < ioxL , KE#-T
zZe D(ot) FET S,
|2~ zlr < lar(?) - ar ()1 + lp* (2)I}),
RN
0" (2) — °(2) < [br(t) — b (8)|(1 + | (2)]);




Ei, EOLBE R THRENTEERRBOE (¢ 0<t < o} 28% &({a.},{b,}) TET;
(A3) g 2 D(g) = H »% H ~OERETH Y, KT W= T
Gl g RV YTy VER LG 262V vy 7Yy VlfHETH D, 2% 0,
lg(u) — g(@) | < L(g)lu — v|H, for Yu, v € H;

(82) H DEBOEREHRE B IiL, $2220%H Co(B) >0 & Ci(B) >0 ¥ FEL TROR
ERXDRILT S

¢(2) + (g(2), 2 — v) 2 Co(B)|zl} — C1(B),
for all t € Ry, z € D(¢') and v € B;
(Ad) EEREDOBM £:0 < ¢ < 0o L EBOTH ri0 <7 < +00 1L,

LRVEE (z€H; |zlu<r, H(2) Sr}y B HTIAV NI PTHS |
(AB) f € L} (Ry; H). £ € H | supy>q|flLz(se41;0) < +00 D,

IfE+ - )= fCleaay — 0, ast— +oo;

(A8) up € D(p*). v € D(p™)

3. MOKIRMFFIENE & IS

COETIE. FRENOMLE s > 0 CHTARORBHRAOBOGENE, —FHEEL THRKZE
%ﬁ‘;‘é o N
(Es)  u'(t) + 8¢ (u(®) + 9(u(®) > f(t), t2>s.

%31 [s,T] LOBK u b (E,) OMTHHER, 2EERTLEE ),

u € C(ls, T} H) N\ W2 (s, T); H), ¢V (u()) € L'(s,T),

loc

@) —u'(2) — g(u(t)) € 8p*(u(t)) for ae. t € [s,T].

70, udt (BE,) DKBMMTHS L, u: s, +00) = H BERD T(> s) oKL [5,T] LT (E,) OWT
borL&Ek\v,

EE 3.1. {¢t} € ®({a}, (b)) EL. g RIKE (91) & (98) R WATLT o T1. f € L} (Ry; H)

loc

r¥B, LA, EED 0<s< +oo & up € D(@®) WSHL . $MHE u(s) =uo 21D (B,) DRBE
Bud—RICEET S,

FE 31 LD, RAR (B) CHTD M (RE) EAXELERTHILHFTED,

M 3.2 EED0<s<t<+oo XHL., E(t,s) FRD LI ITEHKTS ;
E(t,s) &, D(g*) 75 D(¢") ~DEAET, WHME uo € D(p*) XL u(t) € D(pf) EHIEEE 2, =




ZT, u lXHHE u(s) =u 252 (B,) DABRBBTH 5B,

ZoOrE, BERFE E(t,s) AOHEL LD,

(E1) E(s,s) =1 on D(y®) for any s > 0.
(E2) E(tz,8)z = E(t3,11)E(t1,8)z for any 0 < s < t; < t; < +00 and z € D(p*).

ZORMERE E(t,s) T VT, BOKIRME RIEEHY RRD,
R 3.2. {¢'} € ®({a,}, {b:-}) L T2 DL E, REBETHEER No > 0 HFLETS |

[E(t, s)uolsr < No(luolw +1), forall0<s<t< +oo andug € D(p*).

iz, EE 32 OFRELTRD 2OHH Y LD,
R1LERILLEALREDSET, HBEY N, >0 B HEL TROFERNKY 72,

t+1
/ " (B(r, $)uo)ldr < Ny(Juol% +1),
t

Jor all 0 < 8 <t < +o00 and ug € D(p?).
2. FH 32 LABLREEDL LT, £ED H OERRI%L B EEREROER 6> 0 12/ T,
REWI2THHER Mp; >0 BELET S ;

2
< Mg,

d
EE(r 3)”0

sup |p*(E(2, s)ug)| + sup
t>6+s t>d+s L2(t,t+1;H)

for all s > 0 and ug € D(p?) N B.

EHE 31 RUEE 3.2 L ZOROFHEA 2RI, 2] 2 B8BT 2,

4. BRRICHT IKBMTP L 57 52—
OMT, (E,) DBRABR (Eo)
(Eeo)  u'(t) +00™(u(t)) + g(u(t)) > />, ¢20

TERXD, ZOLE, {pP=9p®; 0<t< o0} € ®({a,},{b:}) DT, IHOHERITXTHEY IO, B
s BA, (Boo) 10895 BHERE L L TD(p®) LCEHENEBE (S@)) = {S(t); 0< ¢} ¥ EL 3
:tﬁ?éé°OiD\%h€n®teR+uﬁL‘SuﬂiD@w)ﬁepww)«oﬁﬁf\%ﬂ%n
Om%ﬁzeﬁaﬁjﬂﬁbMﬂeﬁ@ﬁjiﬁméﬁéo::T‘MU@M@@MQ:z%%O(&Q
DOBTH 5, ‘

:@té‘ﬁE&T#§ﬁm&¢wKﬁ?%:ynybﬁ%ﬁEThw\%0$#{ﬂ0}tﬁ76kﬁ
M7F72 5 -OFEEREBLILNTED,




ER 4.1. p>° FPREBLTERETS

FRENRD 0<r <400 2L . £H {z€ H; |2|lg <1, p°(2) <7}
BHOIVNI VN RTEETHD,

FLT, gl (g1) LRD (4.1) W4T 5,

FhERO HOERBFEEBIHL, 5 2°00FH
Co(B) >0 & Cy(B) >0 ¥HFELKREW/IZT ;

9™ (2) + (9(2), 2 — v) 2 Co(B)|2|} — C1(B),
for all z € D(¢™) and v € B.

(4.1)

FOEE, UTD3o0%&4% &+ Dip®) DBTEE Ao P HETS

(1) Ao RZETHW H DIV CERZBIRETH S ;

(i) EHED te Ry CHL . S(t)Aw = A

(iii) H£EDO H OHERBABE B LER e> 0125 . HREM Tp, > 0 FHEL TRIBILT 5 5

distg(S(t)z, Aso) < €,

forall z€ D(p®)NB and allt > Tp.

M 4.1 O (i)-(iil) OREELDOL X, Ay 2 ¥B (SO} KHTIRBHTFF 75— LIH, bL
KBWT 527 5 — BEETE20., POPICKBHT F 779 — 3—BTH %,

KIBT L 57 5 — 2 MAT -0 HBERAET S,
ME 4.1, B LI OEEOTTCKRERS ;
(1) S()() 1+ Ry x D(p™) #*5 D(p™) “DEKERTH oo T T, Ry x D(p™) & Dp™) DL
#it, Fh¥EN R, xH & H ORFNHETH 5,
(2) £ED H OREREAF%E B L. | S®De=)nB) i H ORFHFIRETH 2,

teR4

(3) FhEhD H DERBHRE B LEBDOER § >0 KL,

Cs := | J s®)(D{¢>=) N B),
t>6

i H OBy 37 b RET, 9*° ik Cs LTHARTH S,
(4) % D(g=) ©a > 37 + BT RE Bo KFEL . KFRY LD |

sup ©*(z) < +o0. 4.2)
2€By

FLT. #NZIhO H OFEREHEE B HL . REBLTHERE Ts > 0 B HFET 2

St)(D@®)NB) C By, for allt>Ts. (4.3)




HR. (1), QELTE) R’ TRERERI2LEDR2 LVRY LD, HBE, K (0™}t =™ (te BY)
LT, EH32 LEOR 2 wHEB T LV,
Z2IT. (4) DAFT,
z€D(p®) EL. ENFROWM ¢ > 012X L u(t) := S(t)z LED B, DL &, 2 € D(p™) ¥ B
L (Exo) i u(t) ~ 20 22T B L, R%E1BS,

| &

% () - 20l + 9™ (u(®)) + (9(u(®)), u(t) - 20)

a

t
< 9™(20) + (£, u(t) - 20).
CITHRHE (41) KEFETIE ., XOREXMIN B,

%Iu(t) — zof}y + b1[u(t) - 2ol < Ry forae. t >0, (4.4)
TITE E R ze Dp®) CEEL 2 VEOEMTH B, (4.4) 1.

lu(t) — 20f% < e84t — 2ol + % for all ¢ > 0. (4.5)

*82, 22T, R
Bi:=D(p*)N{ve H; |[v— 2} < 1+5—11}-
LB (45) 5, B XROBELE O Edbh s ;
TNERD H OFREHEE B I L, ROLME% 7+ EREN tg >0 HHET S ;

St)(D(p>*)NB) C By, for all t > tg, (4.6)

I T, By=wnv(S(1)B,) LEDH D, 2T Tonv( - )i, (- )T B convex hull TH D, EIE,
RO (3)IS& D, SQ)By 1t H THMIZ 97 FT oo i, S1)B; LTHERTHS, ThW L By i3
HTIrny FURET, (4.2) HRILL ., (4.3) 12 (4.6) 2ERT 2L Tp=tg+1 IHLBIEIT 5, O

TEIE 4.1 OMRA: #8401 Y EMT 2L, & (SO} HTERBOT PS5 — A 2. 7T 2
YO BBERCHILILLVBOR D, EBE, HE 41 O (1) THORRIUES By ixtl . ki

W7 FT2 85— A, it
A = [ | S()(Bo),

820t>s

THEioh3, ¢

5 FABRICHTIXBHT LTI 42—

ZOET, BAVBLEREBNL,

TR 5.1. (A1)-(A6) RIRET B0 E77, Ap ¥ EH 4.1 THBLI-$R {S@®)} dF KR 7 + 5
75—t TB, TDEE, KK IO,




() H DEEOERBI%E B IHLT,

N U E(t+s,5)(Dp*)NB)C Ax.

T2>0t>7,820

I REMIC. EED e> 00, T, > 0P FEEL TRERIT S
disty (E(t + s, 8)ug, Aoo) L €, foralls >0, ug € D(p?)NB andt > Tp,. (5.1)

(i) KEAT HOERBTEE B PHEET S

N U E@+s9D)NB*) = Ax.

T2>0t>7,820

Shk EHERL . D v € Ay L. 200F) {ta}: ta T +o0 & {sn} C Ry %L TSI
{22} C D(¢*)NB* BHEL TRIEEY LD ;

E(tn + 8n,8n)2n — Voo in H.

LIS DM, HO ERGHRE B ¥ EET S, £2T, E832&K212L0,

|E(t +s,8)zlg <tp, foranys, t>0andze€ D(p*)NB,
and
|2 (E(t +s,8)z)| < Mp, foranys>0,t>1andz¢€ D(p*) N B,
i’ﬁf:?ﬁ:‘tﬁ( rg >0 et Mg >0 fﬁ#&?bo

RIZBMKEDORE (A2) 25 . FRENOMYIRERY s >0 LMWl 2€ D(p*)NB ZLTt>0ix
L. RER:THBE 7:=3,,, € D(p®) BHET S ;

© 1
|2 — E(t+3,8)z|ln < (/t+ |aLB(a)|da) (1+M3),

(H>T ey <t + (/:o laL,,(a)lda) (1+ ME) =) o
LT, -
o=@ <Ma+ ([ ihy@lds) 1+ M)
< Mp+ (/ow IbLB(a)lda) (14 Mp) = Mj.
TIT, Z,. DEREBE BTETILIITE, 2%0,
Bi={%.4 s>0, ze D(p*) N B, t > 1}, (5.3)

LE#RT D, DL EB T, D(p®) ORFRET H THHIV 2 M THD I LICEET S,
EM51 3 AT L-DICROHELBET S,




#HE51. B HOBEREALL, BRETCEHL-VOLTE, - T REBOEERETS, =

DEE, FREFIRD >0 XL,

sup |E(T+t+s,8)z—~S(T)Z 4ln <
7€(0,T]

foralls >0, 2€ D(¢*)NB and t > t*,
Ti’=¥ t* =t*(B,T,e) > 1 BELET B,

B FEECL)ZOWMELERT S, MRPBD LBV EEET S, 2F0, 588 e > 010

ﬂL\

sup |E(T +tn + 85, 8n)zn — S(1)zu i 2 e,
T€[0,T}

E%2 %5 {3p} CRy & {22} CB 2, € D(p*) EL T {tn} it >n (n=12,..) ¥HFET S,
ZIT. Zni=Fay 00t €EB ThH B, Bid HTHHIL 82 P 2OT,

%, — 35 in H,
E2B G PHETHERELTH &LV, $THE, (5.2) 12k DBES BT,
E(tp + Sn,80)2n — 300 in H,

kb,
BT, RO 2ODMIBBEHEZ EZ 5,

U (T) + 89® (Ua(7)) + g(va(7)) 3 f°, 0<7<T,
v (0) = Z,,

LT,
Un(7) + 09"t (u (7)) + 9(un(7)) 3 f(T +tn +80), 0<T<T,
un(0) = E(t, + 85, 8)2n.

FTHE va & oup REBIT, WM 2o D [0,T) £O (Boo) DREICHET 2, (cf. 2). #hwz,

sup |un(T) — vp(7)|y — 0.
€[0,T]

un(7) = E(T +tn + 8n,8n)2n T (1) = S(7)3, DT, Zhid (5.4) KFET 3, O.

(5.4)

TR 5.1 0 (i) DEMA: B%* HORBDERRELL., B i (53) THEAON: H ORIy 2 |
BIREET Do Ao REB{SH)} CHTEZABHT F 525 —%DT, 20OEHD b ZNEFNDe >0

XL
distr (S(1)%, Awo) < 3,
ELBHRBEME 70 = 70(B,e) > 0 FHET 5, Thbb,

forall 7 € B and 7 > mp,

diStH(S(T)zs,z,hAoo) < %7

foralls>0, z€ D(¢*)NB, t>1and 7 > .

(5.5)



CZIZT, T=n iHLA&E 51 28ATHL,

sup |E(T+t+s,8)z— S(T)Zs4l0 <

5.6
1€[0,70) ( )

(ST

foralls >0, z€ D(p*)NBandt>t".
LBt =t*(B,10,6) > 1 FEHET D, ThWXL . r=1 &L BL, (55) & (5.6) 26,

distyg(E(m0 +t+8,8)2,Ax0) < |E(10+t+8,8)z — S(70)Zs,2,¢l0

+dist g (S(70)Zs,2,t, Aco)

€
+-=¢

<
- 2

N

foralls >0, z€ D(p*)NBand t > t*.
b, PoT, Tpei=t +7 WIRL, (5.1) BHY LD, o

T8 5.1 O (ii) PEAA: By 2 WE 4.1 © (4) THOHNZER {SO)} i T2RNRELET D, 3T,
EE 510 (i) OFAWATHESES B EREL T RE B EEXL T, ERENOBREH s > 0 120 L RIE
& By £XIBL T D(¢°) DEGTRE B, T RO L) ICED S, T,

ro 1= sup |z|g < +0o, Mp:= sup |¢*(2)| < +oo,

z€By z€Bg

EBL, TDEE, FREFND z€ By KL, KA WA T v=1v.,€ D(p’) T EE;

-l s ([ oty (o)lde ) (14 M),

. (5.7)
(hence Jv|zr < ro + ( / |a',°(a)|da) 1+ M),
o
zL7T, _
o) <o)+ ([ rolds) 1+ Mo
o (5.8)
< Mo+ (/ Ib',o(o)lda) (1+ M) =: M{.
0
#ZT, B, *
B, :={v,5; §>0, z € By} C D(¢*),
LED B,
ZmrE, B* %

B* = U B,,

0<8<+00
rEnbl, CORENEDELDTHEIEEUTET. (5.7) & (58) 6. 6 B* 3. HT
oy 2+ Tha,
FH 4.1 OEPT Ao = [| JS®Bo THBEZ LA DI ol THIRRLFAMTHS ; ThERD
T720t21
Voo € Ao XL |
S(tn)zn — Voo, in H, (5.9)




E%% 2205 {tn} tn T +00 (asn = +00) & {z,} C By HET 5,
SIT, ERENROBREn LEEM s> 012Kl LD 2, € By L RET 2 v, €EB, k5%, T3
Eptt® — o™ on Hass— +00 £LTC v, , — 2, in H as s —» +00 ZDT.

sup [E(7 +5,8)v,,,s —S(T)2a|lg — 0 as s — +o0.
T€[0,ta]

TR, THRECKEM s, 1L KAEILTS ;

E(tn + S, 30)vs, 0, ~ S(ta)2ali < % (5.10)
(5.9) & (5.10) 2 X b,
E(tn + sn,50)0z, 5, — Voo, in H as n = +o0,
%18%, 2%,
vo€ (] U E@+s9Dl)n5,
T20t>T, 820
Thd, o

6. Skew product flows {CHT 3 AT 57 42—

COEITH, skew-product flows % MBI L FEEIBDR (1.1) ICHHT 2 KBMT F 55 & —DFEETRT,
TOH, KD LS EENTEEGRBORES Y EHT 2,

THAREVER Ro > 0 1L, RE ¥ 2 RDL D ICERT 5,

PIZBIE T 285 on H T,
¥i= o leln < Ry 2L T 9(2) < Ro
ERBERze D) HAHRLES ] HEET S

Bl 82T & EOEMLA dy(,-) ¥ B %o du(,) 1, ¥ x & LORER d,(,-), Ro < r < +00,

dr(¢17¢2) = H(Lr("/’l), LT(¢2))5 ¢1; ¢2 € ‘I”

KEDWERAONB, 22T, H(X,X,) i, HXRD2OOBETLRVERBETRE X, & X, DAY R
FV7HERTHY, L (Y) = {(z,0 e HXR; |z|lg <, Y(z)<o<r} TH5B,
COMME LD WIITBVT, F {g.)} S KT B, oD Dy(%n,¥) — 0(asn 300 ) TH 5
CERREBMETH S ;
dr(Yn,¥) — 0,  for every r > Ry.
8T, ZITHE2HTEXRE (A1)-(A6) I2RD & ) 2 RE (A7) Mz 3,

(A7) D(pt) =: Do &, B t € [0, +00] ITKFEL 212,

EH® 6.1. C(Ry; V) x L (Ry; H) OBAEE K KD &L 5125 %T 5,

K = {(rs0"), 7,f); 0 < s < +00).



ST, BRERFROBM s LY 7 MEREEERTODET S, 2%, 7, EERFROPV =
{pt 0 <t < +oo} (resp. f) 1ML, B o0+ == {p+%; 0 < t+ oo} (resp. f(-+3)) RS HEH
EThd, i,

o) = ol (resp. 7of = f(- +3)),
B, B2, DL s=400 2O, 1) =™ FL T 1o f = f® LED D,

T 6.2. ROLHIEREOK (T@); t >0} TS,
FRENRD t>0IIFL .

TR, p()) = @, p(- +1)),  for any 1), p(")) € K.

38 6.1. COEHEDPS, TRERO (WO, p(-) € K 1ML, @0,p() € K = (1,00, 7 f) 2 #7=TH
ZER o> 0FFEETHIEICEET S,

Kt {T@); t >0} OEHS S, ROWENRLT 5 LA bH D,

M 6.1. ROBEMNEDIUD;

(1) K. C(Ry;®) x L2, (R; H) DaA» X7 M G RETH D,
(2) {T@); t>0} i, K LTEERSh¥HTH 2,
(3) EEOKHt>0IcHL, TEKCK.

ZIT, FRENRD (ug, ), p(-)) € Do x K i2FL . ROERABAZEZ 5,
{ w'(t) + 8%t (u(®)) + 9(u(t)) 3 pt), t>o,

u(o) = ug. (6.1)

CHrE, EREILICLVAKBNBIEETIOT, TOLEOBERAEE Uyo poptT) ET %,
COERFEIR, ROERE GO LA DD Lo

Lemma 6.2. BEREIR. XOHEHE LD
U(,p(-),‘,(.))(t +8,7+8)= UT(,)(w(.),p(.))(t,T) foranyt>12>0, s>0 and (d)('),p(-)) ex
§EER. HE 6.1 20 S OFMEIIMEIIRE S, 0.
5T, skew product flows % BT 570X KD & )% Do x K LOEAFE: €8T 2,

T 6.3. (EBEOK (F(); t >0} 2RD L HIERT B,
FhEROBEMt >0 XL,

F(t)(u0, %0, p(-)) 1= Ugger p(p (s 0)uo, T(t)(%), p())),




for any (uOyd)()vp()) € DO x K.

ZDLE, ROEBOBFEEERYB5,
EIE 6.3. {F(t); t >0} 13, EHOMEL Lo,
Proof. #& 6.1 0°5, X% 185 ;
F(O)(u(h ¢'(),17()) = (U(¢(),p())(010)u01T(0)(¢()7P()))
= (u0,¢()7p())>

2ED, F(0) . Do x K LOEEERETH 5,
K, EED t,8 201K L T, Ft+s) = F(t) o F(s) BT 5 L 27T Wl 6.2 56 . KhH
MY 5,

F(t + 5)(uo, v, p("))

U ()t + 8,0)u0, T(t + 8) (%), p(-)))

= Wwer,p((t +5,8) 0 Upyer iy (3, 0)uo, T(t) o T(s) (%), p(-)))
= (Ugo peylt+s, 8)(Uiy0r,p() (8: 0)uo), T(t)(T(s) (%), p())))
= FO)(Ugor,p()(8,0)uo, T(8) (%), p(-)))

= F(t)(F(s)(uo, %", p(-)))

= F(t) o F(s)(uo, %), p(")).

#oT, ZOEEIFEH SN, ¢

COFBIZEY, T2 8 —O—BEHIMHLB, LoT. Tr52 F-o—BJL O ROFERY
B3,
Theorem 6.4. {F(t)} I2xtTA2XKRWT F 527 5 - AC Do x K BHET S, #0OL. A, Ao X
{2, F)} EFL Ve STT A i3, EH 41 THONLARRICHT 2ABNT F 52 5 —Th 5,
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Degree for Subdifferential Operators
with Nonmonotone Perturbations*

BRET. /h#k #t (Jun Kobayashi)

1 Introduction and Browder’s Results

Browder [2, 3, 4] 2, [HJ##Y Banach 2R X 2o Z OXCHZER X* ~
D, HHEOBEBRE SOV OPDERD I S ACEREEZER LT
ZO%HD 1 DICBAEBERATRICHTIEHRELNHS. BT, A+ (AR
BAEBERE, f 3ARK 1 BOBEREAR) L0 H 7 FXICERE
EEHEULYD, 2hez - ABDOHET, A+k (ki3a/7 bEE
8) EVI TSR LERENEHRTES.

THEOREM 1.1 X % SZm))F Banach ZT, X & X* 2% locally uni-
formly convex (—#7Z 543, Aspland [1] 2R &) £155HD, G % X
ODERBBEEEL. A% X DS X* ~OBKBEBEAETOc A0 28
1 b, k:G— X* %3/ MiBRET . p' € X*\(A+F)(G)
DL X, B deg(A+k,G,p") WEBEH, REMIZT.

1. (Normalization) F' : X — X* % duality map &9 5. p" € F(G)
755, deg(F,G,p*) = 1.

2. (Existence of solution) deg(A+k, G,p*) # 0 25, p" € (A + k)(G).

3. (Domain decomposition and excision) Gi, G» C G ZHVICHR
RB%E LTS p ¢ (A+E)(G\(GIUG,)) DEE, deg(A +
k,G,p") = deg(A + k,G1,p") + deg(A + k, G2, p").

4. (Invariance under homotopy) {A* : t € [0,1]} % pseudo-monotone
homotopy of maximal monotone oparators, {k; : t € [0,1]} % Gt
DIy bRENE—, {pr:t € [0,1]} & X" ICh 1 BT iR
Luk. r>0 BEELT, EED e [0,1] I8 L, B(p;,r)Nn(A*+
k) (8G) = 0 DRI T B EIRET B, TDEE deg(A'+k, G,p) 1
LIRS T—RETHS.

*CDRXBBAET AEAERELOKEHERICLIEDTHS.




pseudo-monotone homotopy DEIE Browder 2, 4] 2R &.

COHEBBBRDLIUREANRR 6N B.

(a) BREZEHT S HORMD, p* ¢ (A+£)(0G) DL iCHE%:
LEETS. #-T, FHOSMEHE LK E PE-FEHOEE D
FEOIZCOBDEL S TS,

(b) deg(A+k,G,p*) # 0 205, HBBR Az + kz 3 p* (z € G) DRBDF
EXEERB NI,

(c) B % normalize 33 duality map F SBABBAMEHAR A LD
MOMEE DK {(1-t)F +1A} 2%, BREAFELTSRE FE—
D7 5 X (pseudo-monotone homotopy) IZ A B0 E S h—iicidH
PV AN

(Browder @ A+ f (f IBHBEAR) &0 7 FXICHTE2ELED,
FIZREDR % )

CNOSDREREFT S0, A HE Hilbert Z2RJIc 513 2 BBMAIERAE L
Ko THBFEIZODWTEET 5.

2 Degree for Subdifferential Operators

H %&n]53735E Hilbert 220, G % H OFRLEHLEEET 3. H ON
W, /VvizEnZEN ()6, |- g, XISEHEIC (), |- | THET.

Ut H 06 H ~OZMiEH/%, Hx H DRHRELSTHBEDTS
7 EE—RY 5.

ACHx H ZWABEREAZEEL A DL /IR M EEHEM
REhZh J¢, A, TEY.

DEFINITION 2.1 RD%FA (i)-(iii) Z#72d H 25 [0,400] ~DOFHid
BB » 2RO EE O(H) TET.

(i) ¢(0) = 0.
(ii) D(p) ={u € H: p(u) < +oo0} % H THEE.

(iii) FEED L € 0,400 IZH LT, A {u € H: o(u) + |uly < L} H
HTau»y b,




(i) &0 » DLW dp i3, 0,0] € dp B/ THARBEAR LS
B. kxR MEBBKETISE, dp+k DEBREEEZ LI ENTX
%, (i) &V dp+k i3, ERAEGEHESICETERELD, L ETH
~PRE (a), (b) DWEHRT S (THEOREM 2.4 2R K). (¢) DKRE FE—
22T, (1), (i) K DROK I BHEREHS.

PROPOSITION 2.2 ¢, ¥ € ®(H) &4 &.

1. {(1 = )Id + tdp : t € [0,1]} (Id 13 H EOEEER) i3 pseudo-
monotone homotopy TH 5.

2. ¢ & Y DBESITRD K 1A EERHE
(Bpa(u), 0,(v)) >0  Yu€H, A>0, Yu>0 (1)

Rtz T o, {(1 = )dp + 10y : t € [0,1]} {3 pseudo-monotone
homotopy TH 5.

REMARK (1) &0 0{(1 —t)p+tp} = (1 —t)dp + 109 L7 5. (1) &
R S & 1C DU TS Brézis (5, THEOREM4.4] 24 XK.
REME—DI7SABEHELTHL.

DEFINITION 2.3 RO (1)-(iv) Z#7cd H D5 [0, +00) ~DOTF
SOBEMOK {¢f t € [0,1]} £hD%EE%E ¢Y(H) TKT.

() FEED t e [0,1] iz, ¢'(0) = 0.

(i) FEED t €[0,1] I L, D(¢') % H TH#E.

(iil) FERED L € )0, +oo[ i LT,

{[u,] € H x [0,1] : " (u) + |uffy < L}
3 87 b

(iv) {0¢' : t € [0,1]} % pseudo-monotone homotopy.
REMARK ¢, ¥ € O(H) 25(1) fifzg &8 & TD&E, {(1-t)p+ty} €
(H) &155.

®(H) DILOEHHSr D4, THEOREM 1.1 FIRD K H TS,




THEOREM 2.4 p € ®(H) &H L. k%2 G 56 HADIAL/ MNIBEH
ETB. pe H\ (Bp + k)(0G) D& &, BH deg(dp + k, G, p) DEHX
h, REMIT.

1. 50T, 0¢ BRBHFATH S LB L. p € 0p(G) 1 51E, deg(dp, G, p) =
1.

2. deg(dp + k,G,p) # 0 12 o1, HER dp(u) + ku > p 1T G IKE%
H.

3. G, G EHVCRIE GILEENABEE LTS u ¢ (9p+k)(G\
(GIUG2)) Q&%v deg(8<p+k,G,p) = deg(aﬂo'l'kalap)_"deg(a‘P'l'
k,Gg,p).

4. {¢' 1t €[0,1]} € ®Y(H) EH&. {k:t€[0,1]} G Lpav
R PREME— {p:t€[0,1]} %2 H ickiT 5@ NlRES
5. EEDt e [0,1] IZHL, pr ¢ (00" + k) (0G) BT B & X,
deg(9¢" + ki, G, py) 13 t KL T —ETH 5.

3 Perturbation Problems

2FIZH T Hilbert ZR LT 0o+ k EWHEDERLD T 5 X (0 €
O(H), kiza sy MIER) KRELTEZ B Lic kD, Browder ©
BABEBERARICHTEIEREDOREEHELI. LHL o DLRNILEY
FD LRy MEETTIRE LT B 700, KEBORES FERADIG
HAEEZZ 156, 0p DBEID I 5 X%, LD NT 5 ANIRT D 4E
Bhd. CORBHERELS, COETREHO—LEELEZ 3.

9, BEID I/ S X%/ MIBBERIIIRET A2 ED oiRYD
5. EEMEZ HiT, Leray-Schauder OE#RE L EZMERISHTEHD

THEOREM 3.1 K % G 6 H ~DaA/X) MMEBHERT, FED
u € GiItxl, Ku 3ZETHOHAMNESENLZHDETS. THEOREM
243, —~MDa X7 MIBER EE KL, —~iOa /37 bRE FE—
(k) 2#BMDOI 7 FRE M= {K} K, ZNEFNEIHRI THK
RVAC -



I, BED 7 5 R%, o I LIcH5BOERME demiclosed ##
E2HOBMEBERD I 5 XiE THIRT 5.
(0, +oof LOHRHMBIBLEDEESEE M &BL.

DEFINITION 3.2 ¢ € ®(H) izxf L, ROZ&M: (1)-(iv) 2#/-9 H 2o H
~DOEZMER B £ DESL% BD,(H) TET.

(1) FEED u € D(dp) IZxF L, Bu iIZZETHWOEAMES.

(i) B IZIRDFERT demiclosed: [u,,v,]) € dp, b, € B(u,) T, 9,
Uy = U, Uy — v, by — b &T B E, be Bu.

(ii1) ko € ]0,1[, @ €]0,2[, Lo € M BEEL,

181 < kolvl} + Co(lulm)(e(u)* + 1) Y[u,v] € 8, “b € Bu.

(iv) b €]0,1[, & € M BFEL,

~(b,u)r < kyp(u) + b(july) Vv € D(dp), Vb € Bu.

FEME—DI S ZAHRAKRICERT 5.

DEFINITION 3.3 {¢':t € [0,1]} € ®'(H) i L, RO%EH (1)-(iv) &5
129 H 6 H ~OBME{OWE {B' : t € [0,1]} £4DEES%: BD..(H)
TEY.

(i) FEED t€0,1], u € D(3p) IZXt L, Blu I3Z TR WHAMES.

(ll) tTl € [071]3 [unyvn] € aﬂatn, bn € Bt"un T', b"), tn — t’ Uy —
u, vy, — U, bn - b fi‘;‘i bE Btu.

(iii) ko € ]0,1[, a €]0,2[, o € M DFHEL,

|61 < kolvlf + Lolfulm) (@' (uw)* +1)
Yt € [0,1], Y[u,v] € 8¢t, Vb € Btu.

(iv) ki €]0,1[, & € M DHFFEL,

—(bu)n < kit(u) + &(Juln)
Yt € [0,1], Yu € D(3y"), Vb € Btu.




T, H O[3tk & 0, RO K 5 B HRRITTESZM D) {H;} 2%
EY5.

UH=H
ieN
P, % H o H, ~NOHRELET 5.
9w € ®(H), BEBD,(H) E8&.ie N, A>0ixtL, 8¢ DL/ IV
Ry b J¥ & BE P DA

{chHzc-~-cH,~c~-

Biy,\EP,'OBOJf‘P
REZ5. B, 3337 MiBMBRENS.
p & (8¢ + B)(9G)

EHE ZOEETAPIBAS0E (N ITHEFELL) A RXNLieN
ICXF LT deg(0p + B; 5, G,p) DEBEI N, Lhd A i IKESBRHI &N
RENB. £ZT

deg(9p + B, G, p) = lim lim deg(dp + Bi», G, p)
EEETS.

THEOREM 3.4 ¢ € ®(H), Be BD,(H) &8 k. p€ H\ (8¢ + B)(9G)
D&%, BY deg(0p + B,G,p) D\EHIN, REMIT.

1. (Normalization) X 5iZ, 0p DEHEHERATH B LB L. p € 9p(G)
73 61T, deg(9p, G, p) = 1.

2. (Existece of solution) deg(d¢ + B, G, p) # 0 13 5T, HEEK 0p(u)+
Bu3pli G ic@axbo.

3. {Domain decomposition and excision) Gy, G, ZEHWIFERL G I2E
ThEHEEETS. u g (Op+B)(G\(GLUG,)) D& X, deg(dp +
B, G,p) = deg(dp + B,G1,p) + deg(dp + B, Gy, p).

4. (Invariance under homotopy) {¢* : ¢t € [0,1]} € ®Y(H), {B': ¢t €
(0,1]} € BDL.(H) &8 &. {p.:t €[0,1]} % H icHi} Bdksih
BMETDH. EBD t € [0,1] iIZH L, p: ¢ (00° + BY)(9G) 23BRILT
5 L&, deg(0p' + B, G,p;) 1t IKIKOT—ETH 5.
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. LOCAL SOLVABILITY AND SMOOTHING EFFECTS OF
NONLINEAR SCHRODINGER EQUATIONS WITH MAGNETIC
FIELDS

YOSHIHISA NAKAMURA
Kumamoto Univ.

1. INTRODUCTION

In this paper, we consider the following nonlinear Schrédinger equations with a
potential in a magnetic field,

10 = %g(—iaj — Aj(t,2))*u+ V(t,z)u + F(u)
(1) =H(tyu+ F(u), (t,z) € RyxR"

where A(t,z) = (Ai(t,z), A2(t,z),...An(t, ) is a vector potential, V(t,z) is a
scalar potential, F(u) is a loeal nonlinear operator.

We consider local Cauchy ploblem of Egs.(1), in this paper,we regard d,u as distri-
bution on R", we construct weak solutions u that u(t) € L2 or H!, and consider local
smoothing effects for H' solutions. Then, we need to consider linear part of Egs(1),

@) iy = -;- 3 (—id; — Aj(t,2))Pu + V(t,z)u (t,3) €R, x R,
=

Assumption A For j = 1,..n, A;(¢, z) is a real-valued function of (¢,z) € R! x R*
such that 32A;(t,z) is C! for any multi-index a. For |a| > 1 we have, with some
€>0

(3) 102 Bje(t,@)| < Call + |2)77, 4,k =1,..,m,
(4) |0z A(t, 2)| +1070:A(t, )| < Co, (t,2) €R' xR,
where Bjk(t, .'L‘) = 6,~A,,(t, I) e 8kAj(t, 1‘).

Assumption V' V(t,z) is a real-valued function of (t,z) € R! x R" such that
02V (t, ) is continuous eor every a. For |a| > 2 we have

(5) |82V (t, )] < Ca, (t,7) €R! x R™,

1



2 YOSHIHISA NAKAMURA
Assumption F1 F € C!(C;C), with F(0) = 0.
Assumption F2 |F'(()] < M(1+|¢P!), (€C, 12 p< oo.

Theorem 1. Asaume (A,V,F1,F2) with 1 < p < 1+ 4/n. For each ¢ € L? ,there
is T > 0,depending only on ||¢||z , and a unique solution u € C(I; L?) of the Eq(1)
with u(0) = ¢.

To construct H!—solution and consider local smoothing effects, we change assump-
tions of A and V.

Assumption A’ For j =1,..n, Aj(x), which is independent of ¢, is a real-valued
function of z € R®. For multi-index |a| > 1 we have, with some € > 0,

(6) |aaB]k(z) < Ca(l + |z|)-—1-e’ J’k = 17 N,

(7) |0*A(z)| < Ca, z €R",
where Bjk(z) = 6,~Ak(z) - BkA,-(x).

Assumption V’ V(z), which is independent of ¢, is real-valued function and
bounded from below. For |a| = 2 we have,

(8) oV e L®

Remark Then there is V) which is satisfied with (V), we have V = V5 + V;.
Assumption A” Under (A’,V’) we have,
(9 |A(2)| < C|Vo(2)"?], = € R™.

Then we write Eqs(1) by

(10) i6u = Hiu+ Viu+ F(u),t >0,z € R*,
13 .
(11) Hy = 5 3 (-i0; — Aj(=))* + Vo (=)
=

Theorem 2. Assume (A’,A”,V',F1) and, if n > 2, (F2) with1 < p < 1+4/(n—2).
For each ¢ € D(HY?) = H' n D(V;*) there is T > 0, depending only on || H}/?¢||2,
and a unique solution u € C(I; D(H)’?)) to the Eq(1) u(0) = ¢. Where H; =
(1/2) £3-1(=0; — Aj(=))* — Vo ().

Theorem 3. Let u denote the solution to the Eq(1) in Th.2. Suppose pu > 1/2.



In the case 1 < n < 6, the following holds.
(12) J /2Dy uldt < oo

where || - ||z is the L? -norm.
In the case n > 7, if p < 1+ 2/(n — 4), then the above inequality holds.

The following notations are used in this paper.
I=1[0,T]
( , ):L?- inner product.
I |lg: L9~ norm.
L¥® = L*(I; L9)
I llgs : L¥*—norm.
r=4(p+1)/n(p—1)
v=r/(r—1)
S = S(R™): the space of rapidly decreasing functions.
2. PRELIMINARIES
Proposition2.1 (Yajima[3]) Let T' > 0 be sufficient small. The family of oscilla-
tory integral operators U(t, s) defined for 0 < [t — s| < T by

(13)  Ult,s)f(a) = (2mi(t — s))™/* / eStese(t,s,z,y)f(y)dy [ €S,
where S(t, s, x,y), e(t, s, z,y) are proper functions the below equation,
|6§65e(t, $,2,Y)| <Cag, O0<|t—s|<T, z,y€eR"

is a unique prpagator for Eqgs.(2) with the following properties:

(a)For every t # s,U(t, s) maps S(R") into S(R") continuously and extends to a
unitary operator in L?(R").

(b)If we set U(t,t) = 1, the identify operator, then {U(t, s)||t—s| <T, t,s€ ]Rl}
is strongly continuous in L2(R") and satisfies U(t,r)U(r,s) = U(t, s).

(c)Forf € £(2) = {f € L¥[|fl2@) = Ciaraice 17°8 S} < 00} ,U(t, 8)f is & T(2)~

valued continuous and L?—valued C! function of (t,s). It sutisfies the following
equations,id,U(t, s)f = H@)U (¢, s)fi0:,U (¢, s)f = —U(t,s)H(s)f.

Lemma2.2(Yajima[3])Let T' > 0 be sufficient small, 0 < |t — s| < T. Then for
2<qg< o0,

(14) U, )fllq < Clt — 8|2V £l

where ¢ is the index conjugate to ¢: 1/¢+ 1/¢’ = 1, and the constant C' does not
depend on t, s, and f € S(R").
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We introduce the following spaces as Kato[1].
X = X(I) = L>n [ptir
X =X(I)=C(I; L® n Lrttr
X' = X/(I) — L2,1 + LH—l/p,r’
normffuflx = |lullz.eo V l[ullpt1r

1l = inf{ || filla + [ fallivrspee|£ = 1 + f2}

Remark2.3(i) X is a closed subspace of X.

(i) X’ is the dual of X.

(iii) The above three spaces are defined on I = [0, T}, that is, depend on 7".Hence for
a different T', a different space is defined. But these are no influence of the estimate
for || - lx, |l - [x’, we discuss now.

Set s = 0, for simplify, we define two linear operators I' and G by
(15) (Co)(t) = U(t,0)¢, tel,

(16) (Gh(E) = /O‘U(t,r) f(r)dr,  tel,

Here %(k) = {f € L Ciaspic 2208111} = [ fllswpe < 00}k =0,1,,,,, 5(~k) is
the dual space of ¥(k). AC denotes the class of absolutely continuous functions.

Lemma2.4 I' is a bounded operator from L? into C(I; L?) N C'(I; £(—2)), with

(17) T = H(t)To.
Lemma2.5 Let f € L'(I; L?). Then Gf € C(I; L?) N AC(I; £(—2)), with
(18) i0,Gf = HO)Gf +if.
Lemma2.6
(19) ICgllx < Cliglla. ¢ € L2,
(20) | IGSlx < Clfllx, S €X',

where C,C’ are independent of T'.
Lemma2.7(Kato[1]) Assume that F satisfies (F1,2). Then F € C'(X; X') with
(21) IF@)llx < MiT|lullx = M2T?||ully, € X,

(22) |F'(uvllx < (MiT + MpT? |l Dilvlix, w,v € X,
where My, M, are some constants, § =1/r —1/r' =1-2/r > 0.
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For Banach spaces X,Y, wesay F € C}(X;Y)if F € C(X;Y) and has a Giteaux
derivative DF(u) € L(X;Y) that depends on u strongly continuously. L(X;Y) is
the space of linear operators from X to Y.

3. THE PROOF OF THEOREM.1.
Lemma3.1 Let v, f € L(I; L?). Assume that v satisfies the differential equation;
(23) 10 = H(t)v + f.
Then v € AC(I;%(~—2)), so that v(0) € X(—2) exists, with v = I'v(0) + Gf.
We prove the theorem by solving the integral equation
(24) u=0u)=T¢—iGF(u).
Let E[F)] be the closed ball in X[X] with radius R and center at the origin.

Lemma3.2(Kato[1])  maps E into E if R is sufficiently large and T' is sufficiently
small, both depending only on ||¢]]s.

Lemma3.3(Kato[1]) ® is a contraction map in the X —metric.
A solution u of (1) coincides with the unique fixed point of ® in E.

4. THE PROOF OF THEOREM.2

Lemmad4.1(Kato[l]) Assume (V’). V can be written in the form V = Vj + V;,
where both V}, V) are real-valued, and ,

(25) Vo € C%5 Vo > 1,8V € L®(k > 2),
(26) Vi e Lk <2).

Lemmad.2 D(HY?) = H' n D(V;?).

Set 94 = 0 —iA, Q(x) = Vo(x)'/2, we introduce the following function spaces
Y = {ue X|oue X,Que X}, |lully = |lullx VIdulx V||Qulx,
Y'={f e X[of € X',Qu € X'}, ||[lly: = llullx V 18Fllx V || Qullx,

and prove that Y coincide with H' N D(V,/%).

Lemmad4.3 Let T' > 0 be sufficient small, 0 < |t — s| < T". Then
(27) L1z D) = Y, 01| < el Hi$lla, & € D(H"),

(28) G1:Y' > YIGifl < ellflly, feY.
Let 'y, G be operators defined by() with U;(¢, s), a propagator for H;.
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Lemmad4.4(Kato[l])Let u € Y, f = Viu + F(u). Then f € Y’ with
(29) [flly < e(My+ K1) Tlully + MeT?|[ullf
where § =1~ 2/r > 0, K1 < o0 is a constant depending on V;, and M), M, are as
in(21).

_Let E1[Ey] be the closed ball in Y[Y] with radius R and center at the origin.

(Y={ue X|oue X,QueX})

Lemmad4.5(Kato{l]) E is a complete metric space in the X —metric.
(30) u=®,(u) =T1¢—-1G F(u).
A solution u of (10) coincides with the unique fixed point of ®; in E;.

5. THE PROOF OF THEOREM.3

Proposition5.1(Yajima(3 ])Suppose that (A,V) be satisfied for Egs.(). Let T' > 0
be sufficient small, 4 > 1/2 and p > 0. Then there exists a constant C,, > 0 such
that for s € R!

6D [ I D UG, IRds < Cul(DYIIR S € SR,

Lemma5.2(Sjolin[2]) Assume (F1) and, if n > 2, (F2) with 1 < p< 1+4/(n—2).
Then F(u) € LY(I;H!) for 1 < n < 6. Under the additional assumption p <
1+2/(n—4), F(u) € L*(I; H*) forn > 7.
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Abstract

In this research,we consider the exponential sta-
bilization of flexible structures by using the static
output feedback control. Sufficient conditions of
structures and observation mechanisms are ob-
tained for the closed loop systems to be exponen-
tially stable. The energy multiplier method is the
key idea in the proof of exponential stability.
Keywords : Distributed parameter sysems,
Flexible structures, Flexible robot arms, Flexible
manipulators, Direct strain feedback

1 Introduction

There are many researches to suppress vibrations
of flexible structures such as light weight manip-
ulators and large space structures . In the prac-
tical view point, it is convenient to design con-
troller based on the finite dimensional approxima-
tion model obtained by experimental modal anal-
ysis or finite element method.

Since these flexible structures are continua
phisically, the dynamics of flexible structures are
described by infinite dimensional model, i.e. evo-
lution equations whose state spaces are infinite di-
mensional Hilbert spaces or Banach spaces. The
finite dimensional model cannot describe the dy-
namics of the flexible structures sufficiently. The
above controller is valid for the finite dimensional
model not for the original infinite dimensional sys-
tem.

It is difficult to show in what mean and how this
finite dimensional model approximates the origi-
nal infinite dimensional system. In order to show
the validity of the controller based on the finite
dimensional model, it is necessary to choose ade-
quate norm in the infinite dimensional state space
and estimate the approximation error with this
norm.

Thus, in this paper, we construct a controller

based on the original infinite dimensional system.
In many control methods proposed in the previ-
ous researches, static output feedback control is
the most fundamental. In this control method, we
design a bounded operator from a measurement
space to a state space, and feed the measurement
data back to the plant directly. This method is
simple, but the asymptotic stability holds under
the condition that the parameters of the system is
unkown.

Theses static output feedback control laws are
introduced by Gressang and Lamont [2] and
Sakawa and Matsushita[3], with the application
to the infinite dimensional observers. These re-
searches deal with the distributed paramete sys-
tems described by diffusion equations as exam-
ples. For the system described by wave equations,
Sakawa studied the relation between the infinite
dimensional obsevavility and the static output
feedback control.{4] This control based on bound-
ary outputs (boundary observation) are studied
by Nambu([5](6].

As static output feedback control laws for flexi-
ble structures, direct velocity feedback [7](8][9][10]
and direct strain feedback are studied[11]. Re-
cently, direct shear force feedback control are stud-
ied [13].

The theoretical essences of the static output
feedback control laws which contain direct veloc-
ity feedback control, direct strain feedback con-
trol, and other genrral output feedback control
was clarified in [1]. In these researches, the static
GENERAL output feedback control is introduced
and the class of structures and measurements for
which the closed loop system become asymptoti-
cally stable. In this paper, the exponential sta-
bility is proved based on the energy multiplier
method.



2 Dynamics and Observa-
tion Mechanisms of Flexi-
ble Structures

Consider a flexible structure and let uy(t,z) €
R? (¢ = 1,2,3) is an elastic displacement at time
t, position = € §} where 2 represents a domain of
structures and 2 C R? (p = 1,2,3). In general,
the displacement u(t, z) of a flexible structure at
time ¢ at position x satisfies a partial differential
equation

2

Tt + D5 4 Ai(t,2) = alt2) (1)
for suitable partial differential operators D and A.
For fixed time ¢, the spatial function u;(¢, -) can be
thought as an element of a suitable Hilbert space
H. The operator A represents stiffness and it is
assumed that A is a self-adjoint positive definite
operator with the compact resolvent. The opera-
tor D represents damping of the flexible structure,
and we assume that it is Rayleigh damping, i.e.

D=al+pA 2)

follows for some non-negative constants a and f.
f2(t, z) is a control input.

By introducing uy(t,z) = &u,/dt, the dynam-
ics Eq.(1) of the flexible structure becomes

0 [ uy(t,z) _ uy(t, x)
5{( ‘“;(t, 2) ) - ( —2Azul(t’z) _Dz‘“?(ts z)

+ ( (}m,z) )

Let u(t’x) = (ul(t’z)y Uz(t,z))T » f(t,I) =
(0» fZ(tr x))T, and

Au(z) = (ug(z), ~Azu1(z) - Dyug(z))” (4)
for u(z) = (uy(z), ua(z)T
Then, Eq.(3) can be rewritten as

% - Aultn) + 12) )

Consider the following observation mechanism,
i.e. suppose we can measure the following data

Cu(t, ") (6)
(cl(')r Cu’?(t» ))H

U(obs) (t) =

(")

(en ("), Cualt, )y

where ci(-) is a spatial weighting function (k =
1,2,-++,N), (-, ") is an inner product in a Hilbert
space H, and the observation operator C is defined
as follows.

(e1(-), Cua(-)) gy
Cu(") = : (8)
(en(-), Cuz()) g

CONDITIONS We suppose that the follow-
ing 4 conditions hold. For a flexible structure
which satisfies the following conditions, the static
output feedback control is valid, as we show later.

1. C~!is a bounded operator on H.

2. A= CAC™! is a self-adjoint positive definite
operator on H.

3. D = CDC-! is a positive definite operator
on H.

4. ./i._generates an analytic semigroup on
D(AY?) x H.

where the operator A on D(AY?) x H and € :
D(AY2)x H - RN

Ay = (yz, -Ay, - Dyz)T (9)

Cy = [(ck,32)mik L 1,2,---, N] (10)

for y = (y1,32)T € D(A'/?) x H,

Examles of A and C which satisfies these con-
ditions are as follows.

Cantilevers When the flexible structure is a
cantilever, the spatial domain € of the structure is
one-dimensional and ) becomes an open interval
(0, L) where L is a length of the cantilever. Let
H = L*((0,L);R), A, = EId'/dz*, D = 6A,
and C, = d?/dz? , where 6 and EI are positive
constants and

D(A)={u € H*0,L);0=u(0)=1u'(0)
= uII(L) = um(L)} (ll)

D(C) = {u € HY(0,L);0 = u(0) = w'(0)} (12)

which reflect the boundary conditions of the both
ends (z = 0, L) of the structure. H™(0, L) is the
Sobolev space of order m on an open interval (0, L)
and EI is a positive constant.

Let ckx(xz) be a positive continuous function
which approximates 6(z — ai) (k = 1,2,---,N).
The time derivative of the strains (the bending



moments) of the structure at = = ay,a2,---,an
are measured. A and CAC~! becomes positive
definite self-adjoint operators on H and the above
conditions are satisfied.

Free Beams When the flexible structure is a
free beam (a beam whose both ends are free),
the spatial domain Q of the structure is one-
dimensional and 2 becomes an open interval (0, L)
where L is a length of the beam. Let H =
L2((0,L);R), Ay = Eld*/dz*, D = 64, and
C, = d*/dx? , where § and EI are positive con-
- stants and

D(A)={u € H*0,L);0=u"(0)=u"(0)
= u'(L) =" (L)} (13)

D(C) = {u € H30,L);0 = u(0) = '(0)} (14)

which reflect the boundary conditions of the both
ends (x = 0,L) of the structure. H™(0,L) is
the m-th order Sobolev space on an open inter-
val (0, L) and EI is a positive constant.

Let ci(x) be a positive continuous function
which approximates §(x — ax) (k = 1,2,---,N).
The time derivative of the strains (the bending
moments) of the structure at z = aj,a,---,an
are measured. A and CAC~! becomes positive
definite self-adjoint operators on H and the above
conditions are satisfied.

General Structures The above conditions are
satisfied when A is a self-adjoint positive defi-
nite operator on the Hilbert space H, C = A“
(0 € « € 1is a constant) and D = A where
§ is a positive constant, since CAC~! = A. If
C = A® (0 < a < 1is a constant), the observed
data correspond to time derivatives of the elas-
tic displacements (velocity) of the structure when
a = 0, to the time derivative of the strains when
« = 1/2, and to the shear forces when a = 3/4.

3 Static Output Feedback
Control of Flexible Struc-
tures

Consider a static output feedback control

ft,z) = G(x)ucbs(t) (15)-

where the feedback gain G(z) is
0,-:

) 0
G(z) = “9( (Cter) (z), -+, (Clen) (2) )(16)

where g is a positive constant.

By this static output feedback, we obtain the
following closed loop system.

a(nid) e
= ( ttgi’:l)(t,x)-bz"?(t’x) )

0
( §ZLV=1 (C_lck) (.’L’) (Ck(')’cuz(t’ ))H )

Introduce a new variable y;(t) = Cui(t)(i = 1,2)
and y(t) = (yl(t),yz(t))T, the closed loop system
Eq.(17) is rewritten as follows.

5 (ue) a8)

( y?(}: ) . )
-An(t,") - Dn(t,)

(3 )
TGS ) el vt N

where A =CAC™! and D =CDC".
By defining an operator € : D(AY?)x H — RN
as

éy:[(ckryz)ﬂ)kl 1)21)N] (19)
for y = (y1,¥2)T € D(AY/?) x H, the transformed
closed loop equation Eq.(18) can be rewritten as

d < seA
S = (A-356C) y(t) (20)

The operator A—g¢*€ in the transformed closed
loop system Eq.(20) becomes dissipative on the
Hilbert space D(AY?) x H.

Note The inner product (,-) in the Hilbert

space D (fil/ 2) x H is defined as follows:

{u,v) = (/il/zul,/il/zvl)ﬂ +(u2,v2)un (21)

for u = (u1,:2)7,v = (v1,2)7 € D(42) x H

Proof
(A-5C) w0
= - (bvam), -3 (ewey),, (@
<0 (23)
QED.



Theorem 1 The operator A— 5(3‘5 generales an
analytic semigroup on the Hilbert space D(A'/?) x
H, and the evolution equation Eq.(20) has an
unique solution.

Proof Since _..i generates an analytic semi-
group and —gC*C is bounded, A — §C*C also gen-
erates an analytic semigroup. Q.E.D.

Corollary 2 u(t) = (us(t), uz(t))T where u;(t) =
C~1y;(t) satisfies the closed loop system Eq.(17).

Proof This corollary is easily proved based on
the fact that y(t) = (¥1(t),52(t))T satisfies the
transformed closed loop system Eq.(18). Q.E.D.

4 Asymptotic Stability of the
Closed Loop System

The following results about the asymptotical sta-
bility were proved in [1].

We show that this system Eq.(18) is asymptot-
ically stable in the Hilbert space D (A‘/ 2) x H.

(This equation looks like the equation in [4])

Theorem 3 The solution y(t) of the transformed
closed loop system Eq.(18) is asymptotically stable

in the Hilbert space D (11/2) x H.

Proof For the solution y(t) = (y1(t),y2(t))” of
the closed system Eq.(18), we have

-2 (Dua(t), 1at))  (24)

-2 (Cyt) Cutt)),
0 (25)

2 o),y

IA

Therefore, for fi(y(t),y(t)) = 0, it is necessary
that y2(t) = 0, since D is a positive definite oper-
ator.

This leads to the conclusion that dy,/dt = 0 and
y1(t) = 0 from Eq.(18). Thus, (y(¢),y(t))tends to
Oast — o0. QE.D.

Corollary 4 The solution u(t) of the closed loop
system Eq.(17) is asymptotically stable in the
Hilbert space H x H.

Proof By the previous theorem, we have

Jim |l ®)llo (4/2) = 0 (26)

and
Jim [yl =0 (27)

Since u;(t) = C ly(t) (i = 1,2) and C~! is
bounded on the Hilbert space H, we have

Jim @l = lim la(e)lls =0 (28)

QED.

5 Exponential Stability of the
Closed Loop System
We show that this system Eq.(20) is exponentially

stable in the Hilbert space D (Al/ 2) x H. The fol-

lowing proof of the exponential stability is based
on the energy multiplier method {12]{14].

Theorem 5 The transformed closed loop system
Eq.(20) is exponentially stable in the Hilbert space

D (42) x H.
Proof
Let
B@) = (u(t).y(t) (29)
= 300, (30)

1212 71/2
+3 (A nit), A yl(t))”

be an energy function for the transformed closed
loop system Eq.(18).

By the equivalenct property of LP-stability and
exponential stability for a strongly continuous
semigroup system(15), it sufficies to proved that

/  B(t)? dt < oo (31)
0

Note that E(t) is weakly monotone decreasing
as a function of ¢ by Eq.(25).
Let 0 < € < 1 and define
V(t) =2(1-¢€)t E(t) + (1a(t) ni(t))y (32)
Since
12 (y2(t), 11(8))

(y2(t)yy2(t)) g + (1 (), m1(t))y  (33)
(y2(t), y2(t)) (34)

+Cony (Al/ 21(t), AV, (t)) u
(14 Cony)E(t) (35)

IA A

IN



for some positive constant Con,, there exists a
positive constant Cong such that

{2(1 — &)t — Cong} E(t)
V(t) (36)

<
< {2(1 - &)t + Conp} E(t) (37)

Thus, we have

V(t)

E®) < 5 =5 —Comg

(38)

Obviously V'(t) becomes positive for t > T; where

2(1 —€)Ty —Cong =10 (39)
Considering the time derivative of V'(¢), we obtain
av
3
= 21-e)E(t) + 21 —e)t % (40)
+ (dy2/dtr n (t))H + (W(t), y2(t))H
= (1-¢€)(n(t).n2(t))y (41)

+(1 - &) (A0, A0 ()
21 -t (D al), 1m®)

- (D va(t) + fiyl(t),yl(t))ﬁ

+ (12(t), ¥2(t))
= (2-€)(va(t)va(t))y (42)

—e (2720, A1)

~2(1 - o)t (Dua(t), 1a(t)) .

- (Bnnw),

(2= €)Cons (D/2ys(t), D21 (8)) (43)
—& (2720, A1),

~2(1 - )t (Dyalt), (),

- (00, D20 (0))

A

for some positive constant Cong.
For an arbitrary constant a >0,

|-2 (D@, u®) |
|-2 (B2(0), D7u(v) | (40)
a? (DV24(t), DV 7a(®) . (49)

1 ¢=12 =1/2
+3 (D0, D)

A

Consequently
dav

&
(2 - €)Cong (D'2ya(t), DV1a(t)) (46)

—e (A0, A1)
~2(1 - et (DY(t), D)) |
2 . -
+& (D40, B n0)
+2—105 (D2y1(2), D/ 2yu(2)) o
2
= {(2 —€)Cong — 2(1 —e)t + %} (47)
(ﬁ" 2pa(2), DY 2!/'z(t)) "
- (ﬁl/zyl(t), Ax/zyl(t))g

1 172 21/2
tra (D yi(t), D yl(t))H

Since

IA

1 /-
523 (D)

a Cong + -
< 20 hnmu®), 9
for some positive constant Cong and a is arbitrary
and can be chosen such that
aCong+ f8

—€
+ 2 a?

<0 (49)

we have

B

(2-¢€)Cong —2(1 — e}t + %2-} (50)

IA
TN ———

Dy (t), D a(r))

Therefore
%/- <0 for Vi > Ty (51)

where T3 is defined as follows:
2
(2 - €)Cong — 2(1 — )Tz + 32- =0 (52)

Since E(t) is weakly monotone decreasing as a
function of t > 0 and V/(t) is also weakly mono-
tone decreasing as a function of ¢ > T3, E(t) can
be estimated as

v(T)
E®) < sa—ot—Com

2(1 — )T + Congy
2(1 —€)t - Cony

(53)

E(0) (54)



where T = maz {T1, T3}. Thus it follows that

/ ” E(t)? dt < o0 (55)
T

QE.D.

6 Conclusions

In this paper, we consider the static output feed-
back control for general flexible structures. The
sufficient conditions (see CONDITIONS) of
system structures and outputs( observation mech-
anisms) are clarified for the the static output feed-
back control to be effective (the closed loop system
becomes exponentially stable).

These CONDITIONS are satisfied by the
wide class of flexible structures and obsevation
mechanisms. It is shown that not only strain but
also other outputs are effective in the stabilization
of flexible structures by the static output feedback
control, and this control method is applicable for
many types of flexible structures including can-
tilevers and free ends beams and other structures
who has general boundary conditions.

The key idea of the prool of the closed loop
exponential stability is the energy multiplier
method. Even if the parameters of the structure
are unkown, the closed loop system becomes ex-
ponentially stable.
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1 Introduction

In this paper, we consider the asymptotic behaviour of solutions to the Schrédinger equa-
tion :

iut = Hu
ult=g = ¢
where H = Hy + V is the Hamiltonian. Hj is an n dimensional Laplacian i.e. Hy =
—(8/0x,)? — ... — (8/0z,)%. V is a multiplication operator associated with a measurable

function satisfying the following conditions.

Conditions of V'
V is a real valued measurable function on R™, n > 3. For some o > 2(n — 2)/(n — 1),

F(<->° V) e L+ (R™) and

IF(< > V| agy << 1. (1)

In the above condition, F is the Fourier transform, < - > is maltiplication operator
associated with < z >= (1 + |z|%)!/2, L?(R™) is the functional space which consists of
measurable functions on R™ whose p th power is integrable,

These conditions assure the selfadjointness of H with the domain D(H) = W2(R"),
the Sobolev space (cf.Agmon [1]). Thus there exists a solution operator e~*H of the initial
value problem. We consider the wave operator W, defined as follows.

W, = s— t_l)i_r'floo eitHe”itH°inL2(R"), (2)
W_. = s— t_l}il_noo eitHe_itH°inL2(R")- (3)

W have important properties (cf. Agmon [1] or Kuroda [7]):
1. RangeW, = RangeW_ = L2 (H) (completeness),

2. W, are partial isometries,



3. Wie itHo — ¢~#HW, (intertwining property).

Note that L2, (H) is the absolutely continuous subspace for H.

Our main theorem is
Theorem 1 let1 <p<2,2<q<o00,1/p+1/q=1. Then for any ¢ € L*(R*)NL*(R™),

: n(1/p=1/2)|( ~itH ppr& 4 _ —itH, _
Jim_ I e W — e=Hog] . =o0.

It is easy to obtain the next corollary from Theorem 1.
Corollary 2 Let p,q as in Theorem 1. Then for any ¢ € L2,(H) N LP(R™),

Jim [{rO /e /D |emH g — oW g g = 0.

Yajima [12] showed that W, are extended as operators in B(L?),(1 < p < 00). One
can see the outline of the proof in next section. Thus, by using the intertwining property
and LP — L9 estimate of e H0_ we have e *HW, ¢, e *H Wiy € L9.

The LP — L9 estimate of e~*H and its time decay was investigated by sevral autors
[2] [3] [4]. One expects that |le~®H P, |l = O(Jt|™™/?) as t — Loo, where P, is the
projection onto L2,(H). However, It is known that ||e™*H P,.$||oo decays at worse order
as t — xoo when 0 is an eigenvalue or resonance for H, where 0 is called a resonance for
H when the equation —~Au + Vu = 0 has a nontrivial distributional solution such that
< £ >7" u belongs to L?(R™) for any vy > 0.

It is interesting that, in Corollary 2, ||e"#H ¢ — e *HoW4)|| decays at smaller order
than —n(1/p—1/2). It seems that e~ **HoW 1 approximates e*# ) so nicely at ¢ = £oo.

2 [L? boundedness of the wave operators W,

In this section, we see the survey of the proof for key lemma, which was given by Yajima
[12]. The statement is

Lemma 1 (Yajima) Let 1 < p < oo,n > 3. Then Wi can be extended as operators on
B(LP). There ezist positive constants Cy,Cs such that

1
< .
”Wd:“B(LP) = 1= 02”]:(< >0 V)” n—1 (4)
Ln=2

Remark In his paper [12], the W*? boundedness of W, are given for some large
potential V. In this case, we have to impose some spectral conditions on H, i.e. 0 is
neither an eigenvalue nor resonance for H. Since the number of pages is limited, we only
show the proof for the small potential.

proof of Lemma 1 (outline)
Let Ro(z) = (Hy — 2Id)™', R(z) = (H — zId)"!. We decompose V as V = A x B*,



(A=|V|V2,B = |V|*2sgn(V)). Then, for A, B € L"(R"), f € L*(R"™), we have ARy(\+
i€)f,AR(X £ ie)f € L*(R*,L?*(R"),d\). And as ¢ — +0, they converge to ARp(A +
i0)f, AR(A £i0)f in L*(R*, L*(R™),d)), respectively. Moreover,

(o o] o0
sup [ AR (A £i0)fIFadh = [ I AR(A £ 0)fIadr O
€>
< ClfIE2ll ANz, (6)
o0 o0
sup / IAR(\ £ie)f||2.dX = /0 IAR(A + 80) f|22dA (1)
0 J0
< ClifllgallAl3 (8)
I1ARy(2)B*|lgz2y < CllAlLaliBllzn, forz € C\[0, 00). )

Note that, in (9), C is independent of z € C\[0,00) The same holds for BRy(\ %
i€)f, BR() L ie)f. These results are often seen in the analytic perturbation theorem (cf.
Reed - Simon [11], Kato [5], Kato - Yajima [6], Kuroda [8]).

We have the stationary representation formula of Wy, ie. for f,g € L2(R"),

R
2w

(Wefi9) = (1,9) = 5z [ (A{Ro(A£i0) ~ Ro(r % i0)}, BRO £ iD)g)dh.  (10)

This result is due to Duhamel’s principle for e#¥ and Stone’s formula in the spectral
theory.

From now on, we consider only W, since the proof is similar for W._. By the repeated
use of the resolvent equation, we obtain

N-1

R(z) = ) (=1)™{Ro(2)V}™Ro(2) + (-1 {Ro(2) V}" R(2). (11)

m=0

We substitute this expansion to (10) and define the operator Wy, as follows.

(Wif,9)
= GF [5°(A{Ro(A +i0) — Ro(A — i0)} £, B{Ro(A + i0)V'}™ Ro(A + i0)g)dX12)

If [V]lpas2 << 1, then we obtain W, = Id + 3%°_, W, in B(L?), which follows from
(5), (6), (7), (8), (9)-

Formally, we have

(=™
27

Wit =

7 Ralx = i0)VY™ {Ro (2 + 0) ~ Ba(r ~ i0)) s

Wy, is more easily handled than W, since it is directly calculated by using Fourier
and inverse Fourier transform.



Lemma 2 There ezist constants Cy,Cy such that for any 1 <p < oo, f € L2N [,

W fllee < CLCUF(< - > V)| ay)™ (1 fllze (13)

Lemma 2 follows from the integal operator representation :

Wi f(z)
= f[O,oo)"‘xIxE""H Km(tl, ceelmy Tywry .. ,wm+1)f(a': + p)dtl ve.dtpmdrdwy ... dwm+(1],4)
where ¥ is the surface of the unit sphere in R", j = y — 2(y - wm+1) for any y € R™,
p =110 + ... + tmim — TWmt1, I = (=00, 2wmy1 - (€ + tiwy + ... + tmwin)) is the range
of integral variable 7, Kpn(ky,.. ., kmy1) = i™+1(2m) =Mt ON2IIALFV (K — kj_1), ko = O
and

; —iy T /2 m
Ky = ‘/[0 - e i=t (81 ...Sm+1) K(slwl,... ,sm+1wm+1)dsl e dSm41- (15)
,00)™

Thus, in order to prove Lemma 2, we have to show that
Lemma 3 Let 0 > 2(n — 2)/(n — 1). Then there ezists a constant Cy such that
1K mll 1 [0,00ym+1 xsmt1y < (Coll F(< - >7 V)||L;;_:;)m+l- (16)

Lemma 3 can be proved as follows.

AN

CM M7 < t5 >/ K|l 11 (s ,L-1([0,00)m+1))»

VR
s
=3

CMHIF(< - > VI, -
Ln—2

1K mll L1 (o,00ym+1 x £me+1)

in

Hence we completes the proof of Lemma 1. O

By the standard density argument, we obtein Theorem 1.

3 Some conjectures

_In Theorem 1, we do not state any results for the case p = 1,¢ = co. Of course, it is easy
to show that the defference e *H Wy ¢ — e~tHog decays at the same order as |t|~"/2, since
each term decays at the order. However, does the defference decay at smaller order? I
think it will be proved negatively if J)(O) # 0, i.e. the case where the state ¢ posseses 0 in
momentum component.
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Traveling Wave Solutions for
Some Quasilinear Diffusion Equations

Hideaki Oshiro (Waseda Univ.)

1 Introduction

We are concerned with the following quasilinear diffusion equation which appears in
mathematical biology:

(1.1) uy = @(u)zz + f(u), zeR, t>0,
where ¢ satisfies

(Al) { p € CI[O’ 1] N 02(0, I]a 90(0) = 0’

¢'(u) >0 for ue(0,1]
and f satisfies

feco,1], £(0)=f(a)=f(1)=0,
fl(0y<o, f(1)<o,

f(u) <0 for ue(0,a),

f(w)>0 for ué€(a,l)

(A2)

with some « € (0, 1).
We are interested in traveling wave solutions for (1.1); that is a solution of the form
u(z,t) = q(z — ct).

Definition. A function u(z,t) = q(z) with z =z — ct is called a traveling wave solution for
(1.1) if q(z) satisfies
(1.2) {e(@)}" +cd +f(@) =0 for zé€ (—00,2")
and
Jim, o) =1
¢(z) <0 for zé€ (~—o0,z2*),
. _ . "
lim ¢(2) =0 and lim ¢(¢(2))’ =0,

g(z) =0 for ze€ (2*,+00) if 2z*< +oo.

.

Here ¢ denotes the velocity of the traveling wave.

2 Results

The sign of velocity c of traveling wave solutions q is given by following method. Multiply
(1.2) by ¢(q)’ = ¢'(q)¢' and integrate the resulting expression over —co to z*; then we have

o= ([ verwa) /([ va@ia@ys) .



If we set s(, f) = fi ¢'(u)f(u)du, then we see that
(2.1) s(p,f)20<c20.

Our main results are divided into two cases; (a) ¢'(0) # 0 (non-degenerate) and (b)
¢'(0) = 0 (degenerate).

Theorem 1 (non-degenerate case). Let ¢'(0) > 0. If ¢ and f satisfy (A1) and (A2)
respectively, then there ezist a unique number ¢ and a unique (except for translation) traveling
wave solution q(z), z = z — ct, of (1.1) with z* = +oo. Moreover, q has the following
properties:

(i) CreM* < 1—4q(2), I¢'(2)], l¢"(2)] < Cae* as z — —oo,

(i) Cae®* < q(2), |¢'(2)], 19"(2)] < Cue??* as z — +oo,

where
—c+4/2 — 4o (1
M= =S I<p()f()>0
2¢'(1)
and
— — 2__4 IO IO
o VR WOPO)

2¢'(0)
and Cy, Cy, C3 and C4 are some positive numbers.

Theorem 2 (degenerate case). In addition to (A1) and (A2), assume

Lep(u) p(u)
(2.2) 0< llgl_glfm < hrf.lj(‘)lpm < +o0.

Then there exist a unique number ¢ and a unique (ezcept for translation) traveling wave
solution ¢(2), z = x — ct, of (1.1). Moreover, q has the following properties:
(1) there exist some positive numbers C, and Ca,

G <1-g(), 1@ [@@I<Ce™ as 2z -0,

| et /P - F D)

2¢'(1) >

where

(i) f s(y, f) > 0, then 2* < 400 and
Dy(z" - 2)'* < q(2) < Da(2" - 2)* for Z*—6<z<2"

with some positive constants Dy, D, and 4,
(iii) if s(, f) = 0 then z* < 400 and

Ki(z* — 2)7% < q(2) < Ky(z* = 2)%% for 2*—6<2<2

with some positive constants Ky, K, and 6,
(iv) if s(p, f) <0, then z* = +0c0 and

q(z) > Ce™* as z— +o00,

with some positive constants C' and .



Remark. For semilinear parabolic equation, the corresponding result to Theorem 1 has
been established by Aronson-Weinberger [1] (Theorem 4.2) and Fife-McLeod [2] (Theorem
2.4). In non-degenerate case we get the same result as linear diffusion. For the special case
¢(u) = u™, the similar result to Theorem 2 has been shown by Hosono[3] (Theorem 1).

3 Sketch of Outline of Proof

Our strategy of the proof is to transform (1.2) into the system of the first order ordinary
differential equations and study the behavior of trajectories by the standard phase plane
analysis.

If we define a new unknown function p = ¢'(q)¢’, then (1.2) is written as

¢@d = p
31
(3.1 { PP = ~-d@f).
It is convenient to introduce a new variable 7 by

dz .
(3.2) 7 = ¥ (a(2))
and rewrite (3.1) as

g = p,

3.3 .
33) { p = —o-o@f(a).

where “” denotes d/dr. In ¢-p plane, (3.3) has three equilibrium points
P0=(0a0)7 P1=(170)7 P2=(a’0)1

so that we have only to show the existence and uniqueness of a trajectory which connects
P, with Py and lies in the region D = {(¢,p);0< ¢ <1, p<0}.

Let S, be a trajectory starting from P; and lying in D. If (¢,p) € S., then p can be
represented as a function of ¢ and it satisfies

(3.4) o __._ Y@@

dq P

Since S, connects with P, we have to add the boundary condition

to (3.4).
We will show two basic properties of S..

Lemma 1. Fori=1,2, let p = p;(q) be two trajectories of (3.3) corresponding to c; and let
pi satisfy pi(1) = 0. If pi(q) < 0(i =1,2) for g1 < ¢ <1, then

2a=n) 2 for gcin ).

Lemma 2. Let s(yp, f) #0. Then

(i) there exists ¢, depending on ¢ and f, such that S, crosses the negative part of p-azis for
every ¢ < ¢,

(ii) there exists T, depending on ¢ and f, such that S, intersects the segment {(g,p);0 < g <
a,p = 0} for every c > ¢.

¢



From Lemmas 1 and 2 we get following lemma for the existence and uniqueness of the
trajectory S..

Lemma 3. Let ¢* = sup{c € [c, 00); there exists s > 0 such that (0, —u) € S.}. Then S..
is a unique trajectory of (8.8) which connects P, with P,.

These lemmas are shown essentially by the same idea as Fife-McLeod[2] and Hosono[3].

(From Lemma 3 the existence and uniqueness of the traveling wave solution is shown,
then we will give the aymptotic properties. In what follows, we write ¢ instead of c*.
Proof of (i) of Theorems 1 and 2. Let S, = {(¢(7),p(7));7 € R} and note that
(g(7),p(7)) approaches P, as 7 — —oo. The linearization of (3.3) at P, implies that S, has

a slope
—c+4/c2 —4¢'(1) (1)
Al o—

- 2

JFrom this fact we get
(3.5) A1 M <1 —g(7) < A for T < 7,

where A;, A2 > 0 are some constants and 79 < 0 is a sufficiently small number. Applying

(3.5) to (3.2) we have 4
= =@ =¢1)+a(r)

with |a(7)] < CeM™ as 7 — —o0. Thus

(3.6) 12() — (20 +¢'(1)7)| >0 as 7— —o0
with some zy. From (3.5) and (3.6) it follows that

(3.7 Bye#? <1 —¢q(2) < Bee** as z — —o0,

where By, B; > 0 and p; = A1/¢'(1). Moreover, we can show an asymptotic property for ¢’
and ¢”.

Proof of (ii) of Theorem 1. When ¢'(0) # 0, we have that P, is saddle point by the
linearization (3.3) at P,. Therefore, (ii) of Theorem 1 is shown by the same way as z — —o0.
Proof of (ii), (iii) and (iv) of Theorem 2. Since ¢'(0) = 0, the linearized matrix at P,
has two eigenvalues 0 and —c. The proof is devided into three cases.

(a) Case s(yp, f) > 0. For (g,p) € S. we have from (3.4)

dbo__,_v@Ia)

c<O0
dq p

near Fp. This inequality shows p < —cqg for small ¢ > 0; so that it follows from (3.3) that
(3-8) g(7) < Ce ™ for T>mn
with some constant C' and sufficiently large . If we set

_ v P(a)f(g)

)



it follows from (A1) and (A2) that

o)l < KOO < g near g=0

with some € > 0. By (3.4)
plg) = /oq(—c +p(s))ds = —cq + Q(q),
where |Q(q)| < €¢**'/(k + 1) for small ¢ > 0. Then we see that
§(r) = p(r) = —cq(r) + Q(a(7)) = ¢(7)(—c + Qu(¢(7))),
with |@1(g)] < Cg*/(k + 1). Since J7 Q:(s)ds is bounded (see (3.8)), it follows that
(3.9) Bie " < g(1) < Bye ™, T>T

with some Bi, B, > 0. Application of (3.9) to (3.2) implies

d
(3.10) Cie~* < ﬁ =¢'(q) < Coe™™ as T - 400,

with some C;, Co > 0. Then we see that there exists some 2* < 400 such that

Ci ~ker * & —k
kce <zr—2(1) < kce ,

which together with (3.9) yields
Dy(z" — 2)'/* < q(2) < Da(2* — 2)'/* as z— 2*

with some D,, Dy > 0.

(b) Case s(p, f) < 0. In this case S, connects P, tangentially to the g-axis and stays above
the curve p = —1¢'(¢)f(g) in a neighborhood of Py. ;From (A1) and (A2) there exists a
positive number Cy such that

1
--¢(9)f(g) 2 —Cog'™*, as qlo.

Then it is found that

02 4(r) = p(r) 2 ¢ (a()f(a(r)) 2 ~Coa(r)* for 7>,

where 7y is a sufficiently large number. Solving this inequality yields

1
CokT + Cl ’

where C, is a constant. Applying (3.11) to (3.2) we get

(3.11) ¢"(r) 2

Cy
’ > - e
dr vla) 2 CokT +C;’



with some Cj. It is shown that

C()kT + Cl

12 > Colog ———
(3 ) Z_Zo+ 2 0gCokT0+Cl

with some z;. Then we have z =& +0o0 as 7 — +o00. Moreover, it is found from (3.11) and
(3.12) that
q(z) > Ae=#/(C2k)

with some constant A.
(c) Case s(p, f) = 0. Since vanishes, it follows from (3.4) that

@Y +F@) =0,

where F(q) = [ ¢'(s)f(s)ds. Because p(q) < 0 for g € (0,1), we see

(3.13) p=—y/—2F(q).

This is the required trajectory. Apply p = ¢'(¢)¢’ to (3.13) and regard z as a function of g;
then we find s
dz (g

g~ \[-2F(q)

(From (2.2) we see that

d '
—Cy** 1 < az _ _L(q)__ < —Cog**' near ¢=0

with some C;, Cy > 0. Then there exists some z* < +0o such that
—2'C2qk/2 <z'-2zX< 2C'1¢1k/2-
k k
Therefore, we get
Ki(z" — 2)Y* < q(2) < Ka(z* — 2)7* as 2o 2*

with some K;, Ky > 0.

4 Numerical simulation

We will give some pictures(Fig.1-3). Numerical simulation is carried out for p(u) = u?+u?
and f(u) = u(u — a)(1 — u). Each figure exhibit the phase plane for (3.3) and the time-
evolution of the solution for (1.1) with initial value

1 T < —1,
u(z,0)=¢ 05(1-2) -1<z<1,
0 xz>1.



References

[1] D.G.Aronson and H.F.Weinberger, Nonlinear diffusion in population genetics, combus-
tion, and nerve propagation in Partial Differential Equations and Related Topics, ed.
J.A.Goldstein. Lecture Notes in Mathematics 446, 5-49 New York: Springer 1975.

[2] P.C.Fife and J.B.McLeod, The approach of solutions of nonlinear equations to traveling
front solutions, Arch. Rational Mech. Anal., 65, 335-361, 1977.

[3] Y.Hosono, Traveling wave solutions for some density dependent diffusion equations,
Japan J. Appl. Math., 3, 163-196, 1986.

[4) F.Sanchez-Gardufio and P.K.Maini, Traveling wave phenomena in some degenerate
reaction-diffusion equations, J. Differential Equations, 117, 281-319, 1995.

[6] P.Hartman Ordinary Differential Equations, Wiley, New York, 1973.

N\

Fig.1
a=1/4, ¢ = 0.634902

Fig.2
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Eigenvalue problem for some quasilinear elliptic
equations in unbounded domains.

A 'R (FRK - B)

1 Introduction

FRIGEMBARZORGAEERZ EDIRAMEICLEIDTHS. Q 2RI %
BR O 2o RY O, 1 < p,qg < oo &L, KD Emden-Fowler B HFERIZD
WTERS.

(P) { —div(|VufP~2Vu) = ju|"%u in Q,
u=0 on 9.
(P) DIEMEMRIZBIL T, [5], [8], 3] P&RL D, @ = RV, Q = O star-shaped
bounded, LT Q = RV \ Q, D=2 DOMBEIZIE, ROETRT X9 #2258
BfdiH 5

HB\BE| 1<q<p g=p q>p
AR WEfgHYy | IFEMR L | FEBHEMBR L
RY R L | EfMHY | SEHEMZ L
418 JEE AN L | IEfEMER L

Z 212 p* i3 Sobolev #8E : p* = Np/(N —p) (for p< N); p* =00 (forp> N) T
b5 £1-u BFEEHBMTH S LIE u e {ue LYN);|Vu| € LP(Q),ulsq = 0} 2
BEROBRT (P) Zh7F 2 L BT,

EFNTHE, FhUNOFERFBOBEIIE) 2BDTHA 9 . Q HPHEREH,
Thbb Q= 0y x RV¢ with Q; bounded. DFHOFROBEIZIL, [7] & [5] DR
CEYVRDEH IR B,

(1)dL,p<qg<p 26T (P) BIEMEME L D.

(2) Q4 2% star-shaped TH5H LT 5.
(a) b L, qg=p %o (P) RIEMER LR/ -2\,
(b) dL, ¢>p* 25X (P) ZFEHHMER -2,

2% ), NEPRIER MBI T, p* 27 critical exponent Td o 7275, FARHB D
AT, g=p b critical exponent TH 2 Z LHFFHEINE. Q PARFARDOES




& p-Laplacian 2% L CH #E—EHMBOEFEER, £—BAEOBMIEICBHT 28R
¥H2H, 0 VFEARERDOBRER, Q=R (2) DAFRINA TS, FRTRE,
g=p T, SHICHABICEAEDITT,

—Apu = da(2)ufP~?u  in Q,
(E){ u=0 on 99,

ST, A>0,a(z) > 0; BRBEE, O HREB, OBEOEMEMIZOVTER L.
BIZ, ¢ < p DBERHRFBLUNOBEABADIHICOWT LN S,

2 Main results

SEHRONI-RREUTICARS.

IVoll3
ol
(1) a € L*(Q) N L>(Q) with & > max(,1) £F5. ZOK, (E) it A=) Ok

X, ZLTCEDOLEDAEMM ue WyP(Q) DD, E6IZ, ) & simple.
(2) z1 € RVI\ {0} PHFEEL T, a(z + 21) < a(z) for ae. z € Q. 25, (E) &
£BD A > 0 ix L CEMM R 2w,

EBL<.

Theorem 1 A, = ueé%’f(n) R(v); R(v) =

3 Existence of the first eigenfunction

TYRMIC, B—EARROFELIENT 5. IFREHROEAEREICH LT
i, LT ORERHBED LD (see Berger [1, p. 335)).

Theorem 2 X % [EBM Banach ZM& L, AL B % X Lo C'-%ABEETS.
CHLE UTD 3o KET 5.

(1) A& X L, 85 TF8B 2> coercive.
(2) up = u 25 B(u,) - B(u)
3) B'(u) =0 %512 u = 0.

CDEE N\ = B(itr‘1)f=lA(u) EFBHE Jue X st. A(u) =\ B'(u).

Theorem 1 DFEHIZIX, RORERFVETH 5.
Lemma 3 a > max(%, 1),C>0¥FELT, ac L2(Q) 261X

P »
/ﬂa(:c)lul dz < C]|a||a/Q|Vu| dz.



proof ac€ L* ICXLTik
a-1/a
P pafa—1
[ a(@)ludz < falla ([ fulr=r=-?)
PEDILL, p< N 26,0 €(0,1) PHFHELT
\o Ve 1-61(,.1(0
([ ere=)"" < ull=ull. < CIVall
p=N(p>N) DL &L, H£BD r 28 L " C Wo? (L® C Wp?) DT,
a-1/a
([ =re=)"" < clival.
z Iz P 4
@RI, /ﬂa(a:)|u| dr < C||a“a/n Vul?dz.

Proof of Theorem 1 (existence)
A(u) = o |VulPde, B(u) = fqa(z)ulPde &L, X = WeP(Q) &£¥ 5.

1/p
(1) Jlullx = (/ﬂ |Vu|”d.7:) THHNDT, A(u) iE weakly-ls.c. 2*2 coercive TH
5.

(2) up = uin WyP(Q) T 5.

n =
lzl<R

8B &, B(u,) — B(u) = I, + J,.

a(@)(junl? ~ o)z, o= [ a(e)(hunl? ~ JuP)dz,

ol < Cllall o etz ry (1Vunllp + [[Vull,)

LB {u,} 1 WEP(Q) TARTHY, ac L2(Q) ZDOT, FHD ¢ > 0 XL,
Ro ®HHELT,

AR g VR > Ro,Vn € N.

72, Qr=QNBr £ FBE, u, & LA(Qr) (B<p*) Tu lZBICKT 50T, BR
BNPHFELTn>NIZHLT
€

[1a] < llalloollfunl” = fullzram < 5

£ 2T, B(us) = B(u).
(3) (B'(u),u) = pB(u) THY a(z) >0 ZDT,Bu)=0 %56 Eu=0. XoT,
Theorem 2 DIRFER H72F DT, Ju € Wy () s.t. Apu = Ay fulP~2u. ‘ 0



4 Generalized eigenvalue problem

EOEBOPT, EABO BT, BRSO I LT R Y
vo. BT, g< p ORELEAS L5 12, WFO &5 i — b S W EAEMES
£33

—Ayu = M|aVu|5%(z)u) % inQ, A>0
E (4 La » L]
(GE) { u=90 on Jf.
L s vl
Proposition 4 XD X9 % “—#fbLENT: Rayleigh®d” EZX 5. Ry(v) = a2}
q

FLT A = (v) EBL. COBLTFHEY L.

inf R,
vECE ()
(1) dL, X# X\ &26iF (GE) SIEEMEF= 2.
(2) L, A=) %25 (GE) DEATE X, i simple.
Proof 1. A<\ Dk XX (GE) DWRIZ w T 5L
— 1/ P—q
/ﬂ IVuPde = Aja/ou||Z; /Q a(z)uldz

= Alla"/?u||f,

Mllateulfs.

IA

X\ DERICFE.
A> A DBAIRO, CQ # dist (U, V< e, Q C Biye THB LD RO DPLHA

BThsLERTD. sup Ry(v)i= — EBE, mA = A THEHPDS, 50> 0
C& () Ai =0
BEELT, A < AP <A
AP AZXIBT 5 positive sol. ([6] ICK DFEENT A D) Ty EBL L
—Ayug = /\"i’°||a1/quo||5_qa - (u0)?*™! in Q.
v % (E) DIEfEE L35 &, (6] & Harnack DAER 9] X ) — e k) T i(,
u < v infl,,
lefrnalie < ool
ETE 5.
— A0 = A0 tuglr4a - (ug)P™!
< APavP = Ma- ()Pt = A ()
where 7 = (AP /A)YED THY, $72, 0 = uolsq,, < nvlaq,, %P T p-Laplacian

DHEBERL D
uo < nv in Q.



ER#EDETE O<ug<npfvforal ke N. k s00 £FTHE uo=0 &2 DFA.
3.A=A DL E,

T (v) = /n (VolPdz — Ay /ﬂ avidz)?l?
L BiiE

J:‘(u) >0 forall ue WyP(Q)
J(;\‘(u) =0 <= u: sol of (E)
TH5.u,v%& (GE) D2 ODIEfEM L T5.
M(t,z) = max(u(z),tv(z)), m(¢,z) = min(u(z),tv(z)) EBL E M,m & (GE) D
WeP(Q) Wiz 5.
ae. 1o € NITXL, to = u(zo) ¢ 5. e unit vector in RV 1%L

v(zo)

u(zo + he) — u(zo) < M(ty,zo + he) — M(to, xo)
tov(zo + he) — tov(zo) < M(to,zo + he) — M(tp,z0) forall h € R

h— 40 EF BT EILED, Vu(ze) = £0Vo0(zo) for all zo € . .l‘.o’('(%) (z) =
to for all z € .

(]

Proof of theorem 1 (simplicity & nonexistence)
9, u A (E) DMELIE, g=p £ THIZ (GE) DRI 5 DT, Proposition 4 &
DFCILA= X DEZDORIIHED D, 222 A\ i simple THBZ LHFbH 5.

u % (GE) DIEEMTHH L T5L, Jy(uv) =0 TH5H. BB v %, uy(z) :=
u(z +z,) TERTAS L&,

0

IA

I (u) = /ﬂ |Vu, |Pdz — Ay /ﬂ a(z)uldz
/n |Vu,Pdz — Ay /ﬂ a(z + z;)u(z + z,)’dz
[ IVu@)Pde — X [ a@ua)rdz = o.

#-T,u; b (GE) DIEMEME 72 5. Proposition 4 £V ¢t >0 BHFEELT, u(z) =
t-u(z). w(z) X u(z) DFABBLZOT, t=1. Tibb,

IA

IN

u(z) =u(z+ z,) forall z € N

E%BHue LP(Q) 22 Qi xy FAICHEFRZDOT, u=0 o
Remark Proposition 4 X ¥, ¢ < p: ‘sub-principal case’ TOIE{FIEEH M
iT5.



Theorem 5
-Ayu =a(x)ul%u nQ,
u=0 on 01},
i&, Theorem 1 @ (2) DEMBERIZTR, H5H VLT D&M
m >0 BHFELT m<a(z) forae z €
T % O EER R R,
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Existence of the singular ground state with maximal intensity

Tokushi Sato (Tohoku University)

In this talk, we consider singular ground states of the scalar field equation in R™
with space dimension n > 2. For p > 1 we call u a ground state of the scalar field
equation if u € C*(R") and u satisfies

—Aut+u=uP, u>0 inR",
(P)o { ’

u(z) - 0 as|z| — co.

It is known that (P)o has a solution if and only if 1 < p < (n + 2)/(n — 2). (We agree
that (n +2)/(n -~ 2) = n/(n — 2) = 0o for n = 2.) For simplicity, we assume that u
attains its maximum at the origin for a solution u to (P)o. Next we call u a singular
ground state of the scalar field equation if u € C*(R™ \ {0}) and u satisfies

-Aut+u=uP, u>0 in R"\ {0},
(P) {

u(r) o0 asz—0, u(z) >0 as|z]— oco.

Note that any solution to (P) or (P)o is radially symmetric ([3]). Concerning this
problem, Ni-Serrin [8] showed that (P) has no solutionif n > 3 and p > (n+2)/(n—2).
Recently, existence results of solutions to (P) for 1 < p < (n + 2)/(n — 2) are proved
by several authors (e.g. [4,9]).

In the following, we only consider the case where 1 < p < n/(n — 2). Then the
behavior of the singularity of any solution at the origin must be

u(z) ~ kE(z) asz —0

for some constant k > 0 depending on u, and we call « the intensity of the singularity.
Here E is the fundamental solution of — A in R™, i.e.

1 1
ifn>3
n — 2)nw, |z|*"2 =7
E(z):={ D lel
— log — if n=
o oglz| f n=2

( wn denotes the volume of a unit ball in R® ). Thus we consider the problem

—Aut+u=uP, v>0 inR"\ {0},
(®)e {

u(z) ~kE(z) asz—0, u(z) =0 as|z|— oo,
instead of (P). Any solution v € C2(R" \ {0}) to (P) satisfies

—Au+tu=uP+ké inD'(R"), u>kE inR"\ {0},



where F, is the fundamental solution of —A + 1in R", i.e.

1 1
Ey(z) := (2#)"/2 Izl(n—Z)/2

Kn_2)/2(I2)

( K, denotes the modified Bessel function of order v ). Note that E; satisfies
—AE1+ Ey =60 in DI(Rn)

and
—lz|

e
W a.s|:c|—>oo.

Ei(z)~ E(z) asz—0, Ey(z)~cn
Concerning this problem, we know the following fact.

Fact. (i) There exists &* > 0 such that problem (P), has a solution for 0 < & < k*
and has no solution for k > x*.
(ii) Problem (P), has at least two solutions for 0 < K € 1.

Now we consider the existence of a solution to (P).e where
k* := sup{k > 0 | (P)« has a solution }
is called the mazimal intensity. Our main result is the following,.

Theorem. Let n > 2 and 1 <p< n/(n-—2).

(A) There exists a unique solution u; € C2(R" \ {0}) to (P),..

(B) Problem (P). has at least two solutions for 0 < k* — kK € 1 near u; in an
appropriate sense.

In the following, we describe the outline of the proof of Theorem. From two propo-
sitions below, we have part (A) of Theorem.

Proposition 1. Let n > 2 and 1< p < n/(n —2). Assume that u; € C%(R"\ {0})
is a solution to (P)., and the linearized problem

(Liu) —Ap+e=pilp, ¢>0 inR\ {0},
1 @0)=1, p(z) =0 aslz|— oo

has a radial solution ¢; € C?(R" \ {0}). Then k; = k* and a solution to (P),, is
unique. Here

CIR™\ {0}) := C*(R™\ {0}) N C(R™).

Proposition 2. Let n > 2 and 1 < p < n/(n — 2). Then there exists (uy,¢1 ;K1)
which satisfies the assumption of Proposition 1.

In order to prove Proposition 1 we use the properties below. Let (u1,¢1 ;K1) be a
solution in the sence of Proposition 1 and set

uy — K1 By = (v, o1 = Moy,



where 0 < v < 1 and ¢ € C®(R") is a radial function which is nonincreasing in
r = |z| and satisfies
for 0 < |z| € 1,

=) = { Ei(z) for 2| > 1.
Then (v1, 91 ; K1) satisfies

v = Vivy;61] 20, ¥ = ¥[vy ;5191 > 0,
where
Vlv;]:= (TYErs[(¢*v + KE)R), ¥[v;k]y i= (Y Exs[p(¢Yv + K E )5 (V).

Note that ¥[v;;k1] : LY(R™) — LY(R"™) is a compact operator if p < ¢ < n/(n - 2).
Positivity of ¢, yields that

Ker (I — ¥(v1;k1]) = [¥n] (C LU(R")),
and we can see that
(I - oy ;) (LA(RM)) = [¥3]*, 9% = pub " o1¢”

by using Fredholm’s alternative. Proposition 1 follows from this fact and the covexity
of the nonlinearity function.

In order to prove Proposition 2 we introduce a parameter € [0,1] and consider

P.) { —Au+tu=u? -1 ~-7)sE1)?, u>kE in R"\ {0},

w(z) ~kE(z) asz — 0, u(z) >0 as|z| — oo.
Now we set up the following problem.

Definition. For 7 € [0,1], (u, ;&) is a solution to (Q,) if
(i) k>0,
(i) u € Cz(R" \ {0}) is a radial solution to (P,)x,
(iii) o € C2(R"™\ {0}) is a radial solution to (L;u).
We set
T:={r€[0,1]]|(Q+) has a solution }.

We claim that T = [0,1] which is equivalent to that T is nonempty, closed and
open in [0,1]. We divide its proof into three steps.

Step1[0€T]

First note that up = ko E; is a solution to (Pp),, for all Ko > 0. So we claim that
(L ; up) has a radial solution for some kg > 0. To do this, we consider the minimizing
problem

ne (SIS | c woomon (03} (=)




By the standard argument we can see that X > 0 and there exists a minimizer @p €
W12(R™) \ {0}. Furthermore, we see that g9 € C2(R"\ {0}), ¢o is radial and satisfies

{ —App + g = -XE{’_IQDO in R™\ {0},
wo(0) =1, wo(z) =0 as|z] - o0

(by normalization of the value at the origin). For ko > 0 such that X = png’l, o is a
solution to (L;uo) and (ug, o ; ko) is a solution to (Qo).

Step 2 [ Closedness of T ).
For 7 € T we denote a solution to (Q,) by (ur,¢r;k,) and set

tr— K+ By = wr = 2: FB1, @r = yr By

Then we see that z, and y, are increasing in r, while u, and ¢, are decreasing in r.
Moreover, {#,}reT is decreasing in 7 and hence 0 < xk, < Kp. For 0 < v < 1 we
multiply (¥ both sides of

—Aw, + w, = v — (1 = 7)(kE)* in D'(R")

and integrate on R™. Then we have
* w2 (de < M,
*) fautcda <

for some M, > 0, by making use of integration by part and Young’s inequality. From
the integral representation of solutions we can see that {z;},e7 and {@,;},e7r are
locally uniformly bounded and locally equi-continuous in R™.

Now we assume {7;}32, CT, 7; —» 7 as j — co. By the Ascoli-Arzeld theorem
there exist a subsequence {7;}32,, radial functions z,¢ € C(R") and « > 0 such that

z"':‘.‘

— 2, @5 — ¢ locally uniformly in R", Krj, > K asti— oo.
Set u — kEy = w= 2E; and ¢ = yE,. Then we have
2(0)=0, ¢(0)=1, u>kE), >0 inR"\{0}.

Furthermore, z and y are nondecreasing in r and hence ¢ > 0 in R". Since u and ¢
are nonincreasing in r, there exist 4,5 > 0 such that

wz) =y, @(z) =7 asl|g] - co.
From (P,; )N,j » (L;us;) and (+) we have
—Aw+w=1uP - (1-7)(rE)’, —Ap+p=pu" 'y in R*\{0} (in D'(R™))

and v # 0. As |z| — oo, we have ¥y = 0,1 and 5 = 0.
Ify=1,then pur~! —1>p—1>0 in R" and p(z) = ¢(|z]) satisfies

n-1

- G+ 1-1)p=0 forr>0

‘P” +

and hence ¢ is oscillating, which is a contradiction. Therefore, ¥ = 0 holds true.



Finally we note that (L;u) has no nontrivial radial solution if u € C}R") is a
ground state. From this fact we can easily see that x > 0 and hence (u p;K) is a
solution to (Q,). Therefore, T is closed.

Step 3 [ Openness of T ].
Assume 19 € T and set

A = {€€ X(R™)

Zn = {€ € X(R™),

/ pul o EErdz = 0},
/ op— l)u”" -£E1dz =1 },

where
X(R™),:={£ € C(R*)NL®(R") | ¢ is radial and £(0)=0}.

We introduce a small parameter ¢ and solve (Q,) for |ro— 7| < 1 in the form below :
i) (2,4 5,7) = (e(yo+ £€), Yo+ en; ko— €p,e%0)  for0<e < 1,

where (§,7;p,0) € AZxR? if 70 =0,

(ii) (2,936, T) = (2n+ €€, Yno+ €N Kry— €p, To+ £0)  for 0 < || € 1,

where (£,7;p,0) € (X7, X Ay )XR2 if 75 > 0.
To do this, we use the contraction mapping principle repeatedly.

By the three steps above we can conclude 7' = [0,1] and part (A) of Theorem is
established. In order to prove part (B) we introduce a small parameter ¢ and solve
(P)s for 0 < k1 — k € 1 in the form

(z:K) = (214 (1 + €€) sk1— €2p) for 0 < |e] < 1,

where (£;p) € Ay xR. This completes proof of Theorem.
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Global Existence for Systems of Wave Equations

with Different Speeds

Bl ME  (LilERFEER)

DToAFIE LR AR (i kFEER) L okAMEICET L.

1 F

ROET BB HBEADNERELZEZ 5.

@) ' — Au' = Fy(0u,0%u) in [0,00) x R2,
u'(0,) =eff, Bu'(0,)) =eg' in RZ (i=1,2,...,m).

7=7ZL,

au = t(aula R ’aum), aui = t(a()u'., aluia 62,”:'),
60 = 6, = 6/8t, 61 = 6/6x1, 62 = 6/61'2,

¢>0,e>0
Thb. ¥z, i, FIREWTI VNI M2 CoRRETHEEL,

Fi(0u,d%) = E E AP (0u)da0pw’ + Bi(Bu) (i=1,2,...,m),
j=1 a,3=0

AP BB A OEET C7RT,

1]



A:!ﬂ = A,'ﬂ'a = A('xiﬂ,
(1.2) oo
|az2(ou)| < M loul” , |B(3u)| < M |ouf,

45, FAiL, small data (23 L CHAMERE (1.1) PEO L2 KBEEZ O EH 2
ICRLERD. |

3, BEHAER (m=1) 0B 2ELXS. LX) CIHRBE Fi(0u, %) FSKRME
BIZOWT 3RO =5 —ThH b EVIRENATIY, 72& % small data THoTH KR
ATEAET B LB S 2V ( F = u)® % |Vul?Au % EERBERCRRT 285 D). ¢ %
small parameter &3 % & B life-span T(c) & Cexp(Ce™2) DL ETH Y ([2]), ¢! 2w
TEEHERA — ¥ —THHHE LXK LT almost global ICHFET B L), ZERTLI3INL
X |21 Fy, DSRABHICOWT 2 RDBAIC almost global IZEASFHFET S. € LT almost
global IZBAETET HHHAITIE & 51T null condition & VI FHERT I LITL ), KiEHF
DEEIRENTV .

Bi=0%:L,0u=0v¥BnT (1) (m=1) % 1 WRBRFERNICLBET. 86T,
plane wave solution, T2 b5 v(t,z) = w(t,s),s = Toey Gr &V I HOBIHIT /RN

(1.3) dw + a(w)d,w =0 (a(w) 1X 3 REHFTHI)

%#% 5. F.John & J. Shatah 1% (1.3) DD life-span {23 % E &4 5 null condition %
RDEICELRI(1]). TabH, (1.3) o0 LIOHIME w(0,s) =eg(s) 522 L, RO
life-span 12 Ce~! BERDEDS, AL (= ((1,¢) #0 LTSI DX ) 2D life-span
A Ce3 PLEIZ% 5 &) &40 5 null condition 23T 5, EVIHDTH5.

Frit, COEBERE—F ¢ WHR2AELHERN (1.1) KEAL, RE-FOR%Z
% R 5 null condition V) REKMGZEN/, S 52, £ null condition
RAITHDH7 IR L, KBRBEOFEEEZHL.



2 Null Condition

CZTIZ ETHHALZ John & Shatah DEEIZET < null condition DEH DEERE %
5. (L) BVT, ¢ BIRTHELZETE, T4bb,

21) Gt (i #7).

¥h, Bi=0t¥5. ¥2k, (L)

m 2
af(0u)0,850' =0 (i = 1,...,m
] B
=1 a,8=0

EBTB. ZIT, du=v EBNT IEET S E,

: 2
(2.2) Y a%(v)8,v = 0.
a=0
AYAR B
(2.3) v="v ™), v = (), v, 0h), vl = Bau,
a*(v) = (45(v); 4,5 =1,...,m),
00
aj} 0
Ag = (5,']' 3
0
(2.4) ?
0 2 20 21 2
Qa}j a}jl a}j 203 a,} a?;
0 6

1

18R (2.2) @ plane wave solution & i3,

2
(2.5) u(t,z) = w(t,s), s = kz Gze (C€R?\{0})
=1



EVIBOBROIETHAD, (25) L (22) L) wid
(2.6) dw + a(w)d,w = 0,

a(w) = (w)™! 3= G0

WY, (2.6) oA M
(2.7) w(0, 5) = e¢(s),

¢ € C5°(R)

Db LTHELD. WHMERIE (2.6)-(2.7) DD life-span % T(e) LT 5.
det (/\ao(w) - 223 (..a"(w)) = AmP(N),

P()) = det(py;), piy = affA* — 2) Z G + :;1 el (1,5 =1,...,m)

XY, a(w) D0 TRVEEMEII2n BHE. ZhE M(w) (i=1,...,m), FETIHE
ARZMVE EEw) (i=1,...,m) £T 5. 22T, M(w) ¥ AE0) = £cil¢| £%BHD
T# 5. Li Ta-tsien, Kong De-xing, Zhou Yi [4] &5 &, &N ¢ € R?\ {0} iTHL,
NQZCrat&atb@%#u,

(28)

m 2 ]
> E (ex)’ =0,

(2.9) J=,,t°‘=2 ;zrj\oi R (i=1,...,m, ¢ €R?\{0})
j,kz=1 a%io 3w¢’;3w;§ i (f" (0)),, (§,~ (0)) 5=

RO IO L THE, (28) BLU(21) &1,

nE|  _
(2.10) agix)"?o ?CJCI %l Y (£}
dwhow et 2 7;0 dwlows . (fi (0))7 (fi (0))6.
Tz, RO CITHL,
2 Y2
(2.11) [go)} -ex{Eo))} =0

j=1



XoT(29)-(211) &V, ROKHGHIHONG.

2 d2a)? o

A a1 X;X’ XzXl; =0

(2.12) afims=o OWEOWG |, oI
for any X* = (X§, X{, X3) such that (X§)? — 2 ¥2_,(X})? = 0.

3 KXEBOEFHE

L4, (212) TWRET D Fi(0u,0%u) E LT, RDIS52bD%FELT:,

a2Adﬂ
8(9,u")0(0;")
3B;

—0 i1=1,.
Bu=0 a,fB,7,6 = 0 1 2

(3.1) ' izl
0(0au')(0pu')A(0w) oo =0 a,B,7=0, 1,2)'

Tabb, (212) KBVT XL XXX ORBFLTOL2HETHAS.

TR (1.2),(21),31) #BETS. COLETHMELER e ¥ ENITEBED (0 <
€ < gg) WX LADSAMERIRE (1.1) 1 [0,00) x R2 I2BWT CORDEE 721 — o>,

M. Kovalyov i [3] 28T, A =042

_o [(Bi=Lem
3u=0_ a,0,7v=0,1,2

DEZIHEOPLKBRVFET AL 2R LOEBRIFOWERETHS.

L TIiX Kovalyov [2] OBORRE AV, ERBOKSFMET Y. BENICIZ o
ZoWT 1/(|lz] + DY2(|z| + ¢ + 1)(||z] — cit] + 1)Y2(0 < v < 1/2) @ decay % HIL,
VA MIEDH I VAERACTEEY 5. & (3.1) &b, F.k LTid Fi(du,0%) =
Oat? Opukd 05’ (j #14) DEI jEIFET i KELBVEIRIDEELTVES, o
T, F,(0u,0%) % i FHE O light cone { |z] = ¢;t } D THHS BB, F, 12 0w (§ #1)
PEINTVBIEDD, ¢ #¢ 1LY decay DESHHbNITV2

J:)
(0?30 )3(y ud)




CDFRFHE & AV X~ i £ MAEDE, BB life-span 3 co ThH B & &R
TIERIYEROERERS.
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THE LIFESPAN OF SOLUTIONS TO
QUASILINEAR HYPERBOLIC SYSTEMS |
IN THE CRITICAL CASE

AKIRA HOSHIGA

Kitami Institute of Technology
Kitami, 090, Japan

In this paper, we consider the existence and blowing up of classical
solutions to the following quasilinear hyperbolic system

‘;’9_;‘ . A(u)—g% —0, (2,t) €Rx(0,T(e)), (1)
u(z,0) = gp(z), r €R, (2)

where T'(¢) stands for the lifespan of C! solutions to the Cauchy problem
(1.1) and (1.2), u = *(u1,u2) and A(u) = (a;;(u)) is a 2 X 2 matrics.
‘We assume that a;;(u)(i,j = 1,2) is C* function of u and A(u) has 2
distinct real eigenvalues A;(u) < A2(u) in a neighbourhood of v = 0. This
assumption means the system (1.1) is strictly hyperbolic. As you see in
below |u| stays small as long as classical solutions exist. Thus we only
have to make assumption on A(u) near u = 0. We let l;(u) and r;(u) be
left and right eigenvectors corresponding to A;(u) respectively, i.e.,

Li(uw)A(uw) = Mi(uw)l;(u)  and  A(u)ri(u) = Ai(w)ri(u). (3)

We note that \;(u), l;(u) and r;(u) are C* functions of u similarly to
a;j(u). Without loss of generality, we may assume that

Lwyri(u) =65 (1,5 =1,2) and ‘ri(u)ri(u) =1 (i=1,2), (4)




where 6;; means Kronecker’s delta. We also assume that ¢(z) belongs to
C'(R)? and satisfies

2‘;&“1 + lzl) 4 (le(2)] + ¢ ()} < oo, (3)

for some constant p > 0.

In [3] Li Ta-tsien, Zhou Yi and Kong De-xing obtained an upper and
lower bound of the lifespan T'(¢) for general systems not only 2x2 systems.
To state their results we need the following notation.

Definition. In u-space we construct a curve defined by a solution for
the following initial value problem;

dl;is) =r;(u(s))  forsmall s, ¢=1,2,
u(0) =0.

We call the curve i-th characteristic trajectory passing through u =0
and denote I';(0).

Then they proved the following. When the system (1) is weakly lin-
early degenerated, namely when each eigenvalue ); is constant along :-th
characteristic trajectory, C' solutions exist time globally. On the other
hand, when the system (1) is not weakly linearly degenerated, if the

following value;
#o
s=0

ceT® L < T(e) £ Ce™ !

d®i\;(u(s))

a=min{aj20| 7507
5%

is finite, they showed

for some constant ¢ and C' and sufficiently small €. Then one may be
interested in the case the system (1) is not weakly linaerly degenerated
and o = 0o, which is called critical case. The critical case is also studied
in scalar case in [3]. They considered the Cauchy problem

ou

§+/\(U)% =0, (.’ZJ,t) ERX(O’T(&:))’



u(z,0) =ep(z), zE€R,

where X' (u) = —exp(—a(|u|)) and a(s) > 0 tends to infinity monoto-
neously at origin, for example 1/sP or (log s)2. They assume () satisfies
the condition (5). Then they proved that

c1 exp(a(cz€)) £ T(e) & Cy exp(a(Ce))

for some constant c;, ¢z, C; and Cs and sufficiently small ¢.

In this paper we obtain an upper and lower bound of the lifespan T'(¢)
analogous to above inequality in critical case for 2 x 2 system (1) and (2).
Precisely speaking, we will prove

Theorem. Let u = u’(s) be points on the i-th characteristic trajectory
passing through u = 0. We assume that A;(u'(s)) € C* and for some

o € {1’2}7 l,‘o(O)(p(.'L') #0,

Do (o)) = F(s) = { oo (matn) o<Hlsa g
s 0 s =0,
and if 1 # 19,

D) SF6) o BSM ™)

for some M > 0, where the function a(-) satisfies

a(-) € C*[0, M}, (8)
a(0) =0, (9)
a(+) increases in [0, M] monotonely, (10)

for any A, B and p > 0 there exists an €9 > 0 such that

a(Ae + Be?)
a(Ae — Be?)

Then there exist an €; > 0 and constants cy,ce, C1, Co such that

¢ exp (a(clze)) < T(e) < C) exp <a(é25)) (12)

S1l+4p for 0 < ¢ £ g. (11)




holds for 0 < € £ €.

The method of the proof of Theorem follows the one used in [3] essen-
tially. To prove the blowing up part of Theorem we construct an ordinary
differential equation with respect to |0u/0z| using a priori estimates of
some kinds of L* norms of u and du/0z. Solving the ordinary differential
equation we find |0u/0z| goes infinity in finite time. Li Ta-tsien, Zhou Yi
and Kong De-xing use an weighted L* normVE (T') defined below which
is not bounded time globally in general. In noncritical case his solution
blows up while an a priori estimate of VS (T') holds. But in critical case
our solution might blow up over the time Vg (T) stays small. However,
fortunately, in 2 x 2 case we find that VE(T') is bounded time globally.
This is the reason why we restrict ourselves in 2 x 2 case.

Typical examples of a(-) satisfying the assumptions (8)-(11), espetially
(11), are

(4)  a(s)=s",  p>0,

1
(B) ) = gy

(C)  a(s) = exp (—sip) . 0<p<l.

p >0,

We verify the above in the end of this paper.

In [5], Li Ta-tsien, Zhou Yi and Kong De-xing treat a non strictly
hyperbolic system and obtain a result similar to the one in [3]. They
assume

A1(0) = A2(0) = - = Ap(0) < Apt1(0) < -+ < An(0).

The proof of the result goes almost same line with the strictly hyperbolic
case. However, the normalized transformation defined in below does not
always exist in non strictly hyperbolic case. To realize the existence of the
normalized transfomation, they also assume that the i-th characteristic
is weakly linearly degenerated for ¢ = 1,2, .-+ ,p. Thus if we consider the
non strictly hyperbolic case in 2 X 2 systems, we need that all character-
istics are weakly linearly degenerated. This assumption implies that the
solution exists time globally and there is no meaning of considering the
critical case.



We comment on a scalar equation

To obtain the estimate of the lifespan T'(¢) Li Ta-tsien, Zhou Yi and
Kong De-xing some tight assumptions on A(u) like (8)-(11). However, if
you are concerned in blowing up only, these assumption are unneccesary.
In fact, if A(-) is not constant and the initial value ¢(-) changes its sign,
classical solutions do not exist globally, see Fritz John [1].

Now we prove that (A), (B) and (C) above satisfy the assumption (11).

(A) a(s)=sP for p > 0.

By mean value theorem, we have

a(Ae + Be®) — a(Ae — Be?) =(Ae + Be?)P — (Ae — Be?)P
=2Bpe*(Ae + Bc?)P~!
for some 6 € [-1,1]. Then it follows that
a(Ae + Be?) o (Ae + Bfe?)p—1
a(Ae — Be?) (Ae — Be?)?

(24e)P~1
(3Ae)?

=1+ 2Bpe
<1 + 2Bpe?

<1+ 2Bp%4"5

Bp4rtl
A

where we assume p 2 1.Thus if we take ¢g < Au/Bp4®, (11) holds. The
case 0 < p < 1 goes the same line to the above.

(B) a(s)= @—)5 for p > 0.

We take g9 so small that 24eg < 1 a priori. Similarly to the above we
have

€,

1 1
2 2) = -
a(Ae + Be ) —a(Ae — Be ) _(log m)p (log Zs—;BeT)p

1 1
=2Bpe”
pe (log Xs‘-]‘-l&TEZ)pH (A5+ Bﬂsz)



for some 6 € [—1,1]. Then we find that

a(Ae + Be?) 14 2Bpe log = g=r ’ 1 1
a(Ae — Be?) PE \ log 5por ) 108 gy pger Ae + Boe?
log 2 \" 1 2
§1+2Bp52( ng;e) ——
log 55-/ log 4 Ae
22+P
<14 8927,

A

Therefore we should put g9 < Au/Bp22*? to make a(s) satisfy (11).

(C) a(s)=exp(——) for0<p< 1.
The argument similar to the above implies

a(Ae 4+ Be?) — a(Ae — Be?)
=0 (-G mp) - (= 5ap)

=2Bpe? ! exp | — 1
(Ae + Be?)1tp (Ae + BOe?)p

for some 6 € [—1,1]. Since p < 1, we obtain

a(Ae + Be?)
a(Ae — Be?)

=1 + 2Bpe? ! exp 1 - L
(Ae + BOe2)i+p (Ae — Be?2)P  (Ae + Be?)P

<1+ 2Bpe?

1 1 1
(Ae — Be2)1+p exP ((Ae —Be2)P  (Ae + Be2)1’)
exp (Ae + Be?)?P — (Ae — Be?)?
(Ae — Be2)itp (A2e2 — B2e4)P

2 \'*? coeltP
< 2 = 2
<1+ 2Bpe (As) exp( = )

9 i+p 1— Co 1—
<1+ 2Bp 1 e Pexp|—e7P].

1

=1 + 2Bpe?




Thus if we take €y satisfying

9\ 1+7 e
2Bp (Z) o P exp (—sé_p) < u,

Ct1

we know that (11) holds.

(1]
(2]
(3]

[4]

[5]
[6]
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R RIEE SRR D VKL 7220 H*H1TD
KIBROERIZDOWT *

A R
t#ERE DC 1

Z OB I, FERBERN B ROKBMOMRK L Besov ZM % AV TT% ) ARICOW
TEIPNRTVET, EHIEEORE LEM LI T, DL o L RBBOMBEIL, EF
BROFME VRL 7 OFERD 5 Besov ZMEH I S &I L o THR VBRI 225
DAFHFHTY.

RESFEROELIF—CREFLVERL LTRRL T LA £0%K, 9 54O Lindblad,
Sogge [3] PRXDFICI—2DRERL LTROBRLADOLFALERYFRRENTEL
720 TDHRIXE FRELRATIROERVOTTA, HHEE LT BesovZ Bl fio Tz
£ TFo Besov ZBMi %) FlAi, b ATENEEX ITMEIC Z ORME L ERK ISR
HILithh TV, BB EONEIERIC LI ETT, SEBETHERIT, B
KEOLNWTWARERTRID I LAY, ENEBTHECTEIHDOTT,

HEDRIC,MEPDFE DD Reférence ¥ Emaill TED L) ICEEINT Lz, BARY
FLENEDHAERICBEY LT LD, FLUTERTVIO bR THA B L,
EONTIhhokAdvboLlownE LS, COHLE) TBRUELEIT,

B#%.2. B inhomogeneous Besov space 2> T, BHBOMBEH AL T E ¥, M
PEEIILRAIENHNE L, RIEBHATEV,
E-mail m-nakamu@math.hokudai.ac.jp

1 1L

EMBHEB FBROKBEY . VRV 7EH A s+ LIEEENLDTY) THE
L& &n) DiHETY,
I<HLRATWA X5z, ERBlEE R,

V(t) = F'cost|- |F, U(t) = F‘ISiIT—.ﬂl.lF, Th(t) = /0t U(t — 7)h(r)dr

L BT,
*supported by JSPS




(NLW)  u(t) = V()¢ + U@y + T(f(w))(2), u(0) =p € H**t, w(0) =y e H*}
LETET. SIT, flu) IKOVTHE. BMEDORD, flu) = uf-luDFh, P TN
T FEXTOLENTHERTT, RT<&Z i o) %

®(u):= Vé+ Uy +If(u)

EBVEIC, @ DB ATMERZM EORMITES 2V BNERTHILETTIE
T3

MBL22DRIOTRERZMOROTHICLEIDTTY. CRIZHLTERD-ODE
HAEEICERERY T,

Theorem 1 (due to Pecher,Theorem 1.1) Assume2 < g < oo, 4—=; 5 <
For t # 0,the following estimate holds.

oy I

<

o
on°

=

I~V (©)gllg < et~/ |g]l¢ (

(LOERIE, 4% v=10BELIEoTVEEA, )

Theorem 2 (due to Hardy ,Littlewood,Pélya, Inequalities p290 ) Suppose thatl <

p<g<oo, a= % - % and h is non-negative in (0, T),then the following inequality holds.

I [t = 7)== h(r)ar; L3(0, 1)1 < clits 270, T
CHOZODERER) &, T IOV TROERF DY 7,

Proposition 1 Let q,r be 7 — g <
inequality holds.

<i-a, 1 =21_2 Then the following

O s

1
q

ITk; L7(0, T; LY)|| < cf|h; L7 (0, T; LY)||
Here c is independent of T. '

=eT 11, 1 1 1 11
n n
= —_ - —_—— <_<__= —_——
lo {(q’r)|2 n.+1 g 2n'r }
(1.1
il 2o =1(~.el
=G | gty =i+ =1C Dek)

EBL L, EDPropositiontx. T #¢ IOJ:OEﬁa)I’-T%: lo L@%@;@&& RIS, R
BBZIBIILEVoTVETH, ZHOIEK ¢ 1T 2 KB Z2 VO T, Hilbert 22
(H+) ) 2 MR T2 L5 TR TRA,

ZFIT, KDL HICED line 26E L CTHBFEL S . SO, KBROMEIZOW
Tid, FREBVRHEMICL OV LIRERDOT, BELAS¥ZMoMSHBBucE D
LTREBLTVWET,



2 RV

Proposition 2 (homogeneous Besov space version) For any s (s € R),0,6, (0 <
8,6, <1), V,U,T are bounded operators on H*+3,H-%,L%(0,T; B sﬂ") to L™(0,T; B"+"

respectively and its bounded constant is mdependent of T and Vo, U 1/), Th € C([0, T); H**+1)
forany ¢ € H**3, ¢ € H*=% hel ’1(0 T; Bq, ") respectively.

Al ,q » o180 li L3, 1E0,5L0,%0L1-0ICATTHIATT. 61120V T
bETT,
D CHEFMmIIRT T, 22

1 1 1 11 11 n-1
= {(~ - — —_— - ——=— - ——
= {( )|2 n+1_q 2’r 2 q 4}

1 1 1
(G 342142 =1GDeD

¢k, EOPropositionid. I f)f l'.t@ﬂ:ﬁ@,'..‘—i% l L@Eﬁ@ﬁl:ﬁﬁﬁl:ﬂﬂﬁ&(
g-;-\: L %%OTV‘iTo

= @ Proposition IZ& ) ,®(u) BT, ¢, v BV, U IKL>TI LOERORIIIB S
NEILdbhPDE L, O EDNL, & FMABRICT 51013, ERERZMERD
IdiThiZivweoffdrbEd,

X(T,R) = {ueL™(0,T;B5*) | lu; L*(0,T; B4l < R}

1 qe
d(u,v) le—vllx, |- llx=[5L70,T; Byl

> -

Hs+i

-y
LwQﬂB%%)

2 g

L7(0,T; Bgy*)

L 4
opl




3 FFEHIR OV

CiRVERICBLETDS, KOMEIX 0,0, ¥ F(HABTIILICEST, f(u) %
! LOFICRENLPOPRBL 2D 3, 22T, IFREBHOFMAEEIIZ ), £OFF
fili % B BLICAT 9 729 1C Besov E 2V E 3,

Definition 1 We say f € Q,p, if f satisfy f € C¥(R%R), f(0) = ... = fED(0) =0,

o[z 91 + wlP~E |z —w] (p2[s]+1),

10D (2) — flD(w)| < {c[z — wr-le) p<[s]+1).

Theorem 3 (0<s) Lets,p,f be0<s, 1<p, s<p, fENpandl,qrbel <I<
00,2<¢,r<co .

Under these assumptions, if l,q,r,p satisfy % = z-q_-l + %, then

—1
15 C)llg < ellullf llull 5

ZOEBREFEHT IR0/ VAOHERIABETT (MBETT)o
. dt,:
B~ [8]—8 8lo, 0.y — Alsla. (. 22
Vs >0, |l B {/0 (t ﬁ,‘,‘g [18%u(-) — (- + y)ll,) t}’

DET, FREEDFMIET T,

4 SciRiEREZR

RIITH T Eid, @ ¥ (X,d) LOWNERTHE0TWMS T L TT, MG L IR
BIIRRE 2 5 R DOEHENTCE T T,

1@ (u)llx Vo + Uy + T(f(w); L™(0, T; B;;Ha)“
C"¢”H-+§ + CII¢||H,_§ + c"f(u); L’Jvl (O’T; B;:;’;l)”

AC
cligll yury + clloll G-y + CIIIIu(t)II’; ety L (0, 7)|l
ia

IA

IA

IA

Bl e + bl g + Tl
I( (@) = F)); (0, T B9

ellf(w) - £o); I 0, T3 By ™)

d(2(u), ®(v))

IA



< C||(IIU(t)H”'.+./ + @I, +.f e A ,L¢°‘(0 D

72

< T "(nuusz +nv||3;1>d(u,v>

PEDRED L. ¢ ¥ (X,d) LOKINERTH B0, 0,0, WROKMEE HHI-¢
rwnwzedtbdrh 4,

o n—l__ _ _n+3 4s

W0) = (=~ 2 n—1

1, -nn-3)+2(n+1)s

mn ~~
h(6) := - 2n b+ 2n

6>1- 3(;1’%9071 _s), 8 <25, 812 1(8), 61 > h(6)
1 s+s s+ 8p,
(- 2% (%l )

CNERICRRLADDOD»S, i (0,6) = (171(1),1) (I LT T oz o L ih ¥
T) OHETIR, RDOZOD Corollary 5N B itk I3,

6| N \

N

2.(0)

O 1- 3 (zag) n(e)\' N

vO
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Corollary 1 (6, =1) Letns,p,f ben >3, 1 <s <25l I+ -9 1<p<
1+ 2("‘ -38)", 2<ps+]<p fE€Q, Under these assumptwns for any ¢ €
H**+3, ¢ e H-1 , (NLW) has a local solution in C([0, T}; H"*f)

And moreover zfp =1+2(221 - 5)"! and ”¢”H'+i’ ”1’[)"1{'—5 are sufficiently small,then

(NLW) has a global solution in L>(0, c0; H*+1) N C([0, 00); H**3).

Corollary2Letnpbe3<n<7 max(2,1+ L) <p< 0.
Ifs, f satisfy s = 251 — L1 f € Q,p, then for any ¢, ¥ € S such that |9l erys 191l -y
are sufficiently 3mall (NLW) has a global solution in L (0, co; H*+3) N C([0, co); H*+1) .

RO Corollary iX, H** MTABBEL RO L X2/, 2BENOLORFEIIAE
WIZp LTKIBMERDB L ZIcEL T T,

PE. REFRICKEBBEOBBRICOWTRRE LS, I LMA»EET 2L, BT
BOMETEI Y, LA LINb Lindblad,Sogge [3] IC& o THONTVARRED—DT
LfCo

RERICER L LT, BesovZZMICDOWTHRRS &, BesovZEMiiz VKL 7220 & # M4
THRIIN T2 DT TIPS, VRV 7ZMEFEAVTIIZ LD TCELLEVET,
KB, REEDORL[B] TRYRL7ZHMEAVAHFRELTHS L LBTVET,
BRIELLHLE) BRI EbhoTirWERA FHoTwaHFFSboLewnE LA
b, B TLEEW),
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MR E XD anti-periodic
BO—BHEIZDONT

BRI PRRAKREE T2HER

1 Introduction % Hilbert ZZR3 HIZRW T, BFRIZHRE T % IERIE
ERE 0p! ICXBEINIROEREHMRBRAER

(E)  2(t) + 0o (u(t)) 3 f(t), te€[0,T).

@ anti-periodic B8 u(0) = —u(T) OROEEICI DV THESNHER
ZDOWTHETS. 2T 0p'() RNMKELERE I 2T 8k B
W H— (—oo,+o0] DEMAEARTH 5. $WA0p LWEMIE
(¢ # +oo) THEMBEMBIM o: H — (—oo, +oo] IKHLT

Definition f € dp(u) & ¢(v) — p(u) > (f,v—u) "wveH

TEBIND ERIAEAFKET—RNIZIXZMETH 5D, Fréchet A D—
#{biz & > T 3. Anti-periodic BRI & i, Anti-periodic B D ER %

Definition u(t) is T-anti-periodic & w(t+7T) = —u(t) ae t€eR
13L& HRBR (E) D anti-periodic REZ KO SREEEWN 5.

Remark u(t) is T-anti-periodic

t+27T
= u(t) is 2T-periodic, and / u(t)dr =0, te R
k4

Example u(t) = sin(%t) is T-anti-periodic
Anti-periodic BIBEDRH# L L T, coerciveness & evenness DEE %

Definition ¢'(-) is coercive
. P(w) o [T

& liminf — I(t), with / I(8)dt = +oo.
ful—too |ul o

Definition ¢'(-) is even @ ¢'(—u) = ¢'(v) "ue H “t€[0,T).

& 3 W, periodic T, MOFELEEZTRT DI, ¢(-) D coerciveness
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ERETDIELHHFENICLELRODICN L, anti-periodic E TR, &7
Ldpl(-) ¥ coercive TR TH, ¢'(-) Beven THIZ L BRET 7
T, MOGHEETEDLBICHD.

2 Cauchy problem, periodic problem, anti-periodic problem
TS9ETHROATULIEROME
Cauchy Problem IZBEL TIX, D! @ ¢t ICBAT 21ES T D&M

(A. ¢*) : 3my, my >0 such that Y4, €[0,T], Yz € D(9p™),
3z(t) : [0,T] — H such that
(1) |a(t) — zo| < malt —tol(w"(z0) + 1)V/? "t e [0, 7],
(2) @'(z(t)) — @ (z0) < M|t — to|(¢™(z0) +1) "t € [0, T].

@ % & ¢, Kenmochi [2], [3], Yamada [9], Otani [8] & ¥ & > TROH#
EHFREhTNS,
Periodic Problem icBELTiZ, (A. ') + [¢°=¢T] + [¢' D coercive-
ness | @ & T, Nagai [5], Kenmochi [2], Yamada {10] % &= & > THD
BEBRINATWVD.
Anti-periodic Problem icBIL T, (A. ¢') + [ =¢T| + [¢' @
evenness | @b & T, 8B4, Okochi [6] IZL 2T ¢ =, DBHITDONT
ROBEDTEN, o't AT 3B DV T, Okochi [7] & D,
HAIRMEOTCMOFEENTRINTNS.

3 ERR RIOBRE, [7] CIRESN=RHIMTH, KEABIC
(A. ') + [¢°=¢T] + [¢"evenness | 7213 T, (E) D anti-periodic "
OHEEERTILHPHRELNIHDTHD.

Theorem 1 (A. ¢!) Db LT, ¢° = o7, ¢’ : even B 5, (E) D anti-
periodic DSHFHET B, COLEE S ue WH(0,T; H) D¢ (u(t)) &
[0,T) CHBEETDH 5.

Anti-Periodic D —BHiX, AHRO —BHELRIET 2RHFLD BB
ZHDOH L TRIEEND. TROLERD2DOOAKMEOENHKITEN
7 kW TeHNIE, Anti-Periodic B —BNTH 5. ZOR/D+2RHIH
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2, ROFEBEREN S (cf. Kenmochi-Otani [4]).

Theorem 2 XD (0), (i), (ii) PV ThIrOREEK =T L &, (E) OR
E—BNTH .
(0) @(u) = p(u) te[0,T] Yuc H.
() B3 to € [0,T] KA LT D(p") LCRBEMTSH 3.
(i) (E) DF<TOMu iz L T-2(¢) = (dp'(u(t)) — f(t)° ae. t €
[0,T) »pRL T 5.

22T, HER (E) CHLRDL > LMD class 2 BAT 3.

F & {u € C(R; H) such that u(t + 27) = u(t), "t € R},

7% {u € C(R; H) such that u(t + 7) = —u(t), %t € R},
Fr {u € C(R; H) such that u(t 4+ 7) = u(t), "t € R},
p2r ¥ {u : solution of (E) such that u(t + 27) = u(t), Yt € R},
P, {u : solution of (E) such that u(t +7) = —u(t), vt € R},
pr¥ {u : solution of (E) such that u(t +7) = u(t), “t € R},

)L {ut):ueFg), F) Y {ut):ue F}, YteR.
Pit) ¥ {ut):ueP;), P ()Y {u®t):ueP}, YteR.

Remark 1
(i) In general, Anti-periodic solution is not unique.
(i) PT c PT .
(i) PT# 6= PT £ 4.
P PT PT izt LCROEEHRELT 3.

Theorem 3 P =PI g F7 ,ie.,
Yue P Jwe PY, Jve FT, such that u = w+ v,
w(t) = Projpr(yu(t) = ﬂg#“’—”, Yue PT, VteR,
Ju* € P, such that w = ﬂ;‘—‘

Lieh>T, RO P O—BAMBBEILT .
Corollary 2 Yu € P, 3/w € PL, 3/v: T-periodic € C([0,T]; H)
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such that v = w+ v.

PT =Pl 2B00E+AEHFL LU TRORIEITS.
Corollary 3 P?*T = PT <= PI(0) has an interior point in P,7(0).

T-anti-periodic BO—REO LB+ 23R4 E UTRIRDARIHEILT S.
Corollary 4 PT = {wy} <= “uy,u; € Por w1 — uy is T-periodic.

4 Theorem 1 DOIEBADMAE. F T EHIC,

Lemma 0 (A. o), ¢ is even R 5IE, —BMEZEKDTIZ, o(u) 2 0,
Q0 <C,"weH, "te[0,T) LT 25T LHH*KD.

BEEDMLDDT, pIIEDLS>RHDOLTS. ZLT, ROEBGERR
HATS.
du,

®.1 @&t 0! (ue(1)) + eue(t) > f(2),

u.(0) = —u.(7T)

Aot (u) + eu x5 $ % functional ¢! (9dL(u) = O¢p'(u) + eu) & coer-
cive TH 2D T, (E). D Cauchy FIEDRE v.(t) &t KBALTHRICRS.
L7 > T, periodic FIZ & B#kIC LT, (E), D anti-Periodic B DD
BEDPWZ D, TO—EHEX 4! strictly convex THLIBIDRIAEINS.

FIUAUHE () : 7, (E), & & 2833, ZLT, RO

Lemma 1 (A. ¢') =
|8 ot (u(t)) ~ (B! (e, O
< maldp (U (D) + DV2 + mal!(u(t) + 1), 1€ [0,7]

E, ot(ue(t)), |uc(t)|* » T-periodic TdHBHBITERLT, [0,7] THRAT
2, ROA%21EB 5.

T T T
W) 5 [ 1 Geopar <o [ 1P [ (i) e [ luora

F7UAUEE (I1) : (B).\C w2873, LT, Y6>0 2EE
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T5. 0(0)<C Vte0,T] CEELT,[0,T) THAT DL, ROR%
5.

T T T T
t 2 2 2
®) [ eHuor2e [ upar < [ unlaerCs [ for+ar
22, Haraux [1] K & > TRENERDOFER

Lemma 2 u(0) = —u(T), v € W"3(0,T; H)
= |ulpeooria) < TV % 120,15y

ERWT,(A) L (B) 804 &EEIE, 0<e <] icHL,
— o1 [ 1% wyede < 5 [ (5P + 1)t

285, Lo, { }liL"’(OTH ) THRLED, b5 —K Lemma 2
AV, {u) cz L0, T;H) TERL 23, LE¥>T, MYEs
SRS SR, UTEHS. |

u, — u weakly in L*(0,T; H)

du, du e rg .
p T weakly in L?(0,T; H)

Z Z T, Ascoli-Arzela O EHEH W CIHEHI N %5 XD Lemma

Lemma 3 u, —u weakly in L?(0,T;H), p>1
dun % weakly in L?(0,T; H), ¢ > 1
= u, —»u in C([0,T]; H,)

( C([0,T); H,,) is equipped with uniform convergence topology )
ERVLAE,
u, = u in C([0,T]; Hy,)

%183, u,(t) & T-anti-periodic TH DT, (un(0)+un(T), )y =0 “ve€
Hinr?d o7, (uw(0)+uT),v)g=0 Ywe HLR3DT, u0)=
—u(T) 218%. u(t) b (E) DM TH 2R ER BT, £300'(u.) DER
Z (E). #BRATHIIE, Ywe L0, T;H) oML,

/ngot(w(t))dt / ot (un(t))dt > / d"" )—eun(t), w(t)—un(t))dt
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L% FIT,

gu, — 0 strongly in L*(0,T: H)

T du,
[ G utndt = Yu TP = Se()? =0

T du 1 2 _ 1 2
[ Gou®idt = YunP - Hu@F =0
T
Y(u) = /0 ©'(u(t))dt is weakly semicontinuous on L?(0,T; H)

CERLT, e\, +0 L ThiZ,

[ twend = [* otz [ - L) - uw)
LB, LEB>T dpt(u) DEBLD, u ik (E) OBL 23,
[Q. E. D.]
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