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Stefan problems with dynamic boundary conditions

A B2 (RHLAN¥RE I¥HWRR)

1 Introduction

In this work we deal with Stefan problems with dynamic boundary conditions.We refer to [2] for
the physical background.

The problem is stated as follows. Let 2 be a bounded domain in RN (N > 1) with smooth
boundary ' = 89; and let T be a fixed positive number, @ = (0,T)x £, & = (0,T)x T . The problem,
denote by P(ug), is to find a function u = u(t, z) on Q satisfying

w-Af(v)=4 in Q,
‘IL(O, ) =ug in Q,
-?%(:'—) = g(tt a:,ﬂ(u)) + ﬁ(u), on 3.

Here f: R — R is a given non-decreasing function; f : Q — R is a given function; ug is a given initial
datum; g = g(t,,¢): (0,T) x T x R — R is a given function which is non-decreasing in § € R for a.e.
(1, z) € T; (8/9v) denotes the outward normal derivative on I' . For the data we postulate that

(A1) B is non-decreasing and Lipschitz continuous on R with B(0) = 0 and bi-Lipschitz continuous
both on (—oco, —ro} and [ro,00) where r¢ is a positive constant; denote by Cp a Lipschitz constant of

B;
(A?2) f € L=(Q)
(A3-1) g(t, 7, €) is non-decreasing in { € R for a.e. (t,z) € T and g(-,,0) € L*(Z);

(A3-2) g(t,,£) is Lipschitz continuous in £ uniformly with respect to (i,z) € Z; denote by C, a
Lipschitz constant of g(t,z,);

(A4) up € L=(0) and B(uo) € WH3(Q) .

In particular, when 8'(r) > 0 for any r € R, problem P(ug) was treated by [1]. Also, in case the
flux condition is of the form —2%‘;')- = g(t,z, B(u)), the problem was uniquely solved in variational
sence by [3]. The purpose of the present paper is to establish a existence result for problem P(ug) and
to show the uniqueness of the solution in variational sence.
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2 Main results

We give a notion of solution to P(ug) in the variational sence.
Definition. A function u : [0,T] — L3(Q) is a weak solution of P(uo), if it satisfies the following (s1)
and (52):
(51) u € Cu(0, T3 L3(@)) n L(Q), A(x) € L*(0, T; WH(5)) sad B(w) | rez€ Cul(0,T5 (O

(52) - /Q undzdt /n won(0)dz — /E B(u)mdTdt + /P Blua)n(0)dT+

/ VB(u) - Vndzdt + / g(t, =, ﬂ(u))ﬂdr dt = / fndzdt foranyne W
Q L Q
where dT" denotes the usual surface element on I and W = {n € W"2(0, T; W3(Q)); n(T) = 0}

THEOREM 1 Suppose that (A1),(A2),(A3-1),(A3-2) and (A4) hold. Then P(uo) has at least one
weak solution u.

THEOREM 2 Under the same assumptions as in Theorem 1, P(ug) has at most one weak solution
u.

Next we mention a comparison result for P(uo).
THEOREM 3 Suppose that (A1),(A2),(A3-1),(A3-2) and (A4) hold and o satisfies (A4). Letu
(resp. @) be a weak solution of P(u) (resp. P(t)). Then for any t € [0,T),

I[u(t) = 8()* 12 @) + |1B(u)(#) - BENO 1@

< lluo — %ol *lzr @) + 1[B(x0) —~ B(w)*ler (-

THEOREM 4 If condition (AS-2) is replaced by the following condition (AS3-3), then Theorems 1,2
and & remain valid:

(A3-3) g(2,,£) is locally Lipschitz continuous in § uniformly with respect to (t,2) € T, that is, for
each M > 0 there is a constant Cy(M) 2 0 such that

|9(ti -’Bvﬁ) - 9(‘1 z, él)l < C,(M)IE - €’|
for all ¢, & with |¢] < M, || < M and for a.e. (1,2) € Z;

there are constants my,my with my < my such that

g(t,z, B(m,)) £ 0,9(8, z,8(m3)) 2 0 for a.c. (1,z) € Z.
We shall omit proofs of Theorems 1,3 and 4.
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3 Sketch of the proof of Theorem 2

This section is almost paralleled to §.6 in [3], although the situation is slightly different.

Suppose that u;, uz are solutions of P(ug). Observe first that the following integral identity

- / (w2 = ua)mdadt — / (B(u1) — B(us))mdTdt
.JQ h>]
= [ (Bw) - Bua)andzat ~ [ (Bur) - Blua))grdri (31)
Q ]
- /D(g(t, z, B(w1)) — g2, z, B(u3)))ndldt

for any n € W

where W = {n € C%(Q); n(T) = 0}.
In order to avoid some surplus notational complicacies we introduce the following functions:

u(t,2) = w1 (¢, ) - uz(t,z) in Q,

U(t,2) = B(w)(t, z) - B(u3)(t, ) in Q,

_ :’:': ifu(t,z) #£0,
alt,z) = { 0 ifult,z)=0,

_ $,2,0(s ‘—‘is -, ifU(t,z)#O,
Vite) = { 0 U z)=0.

By the definition of solutions to P(uo) and the assumptions (A1),(A3-2),

we L*(Q), (3.2)
0<a<Cp inQ, (3:3)
0SV<CsCy 0 T (3.4)

Using the above notations we can rewrite (3.1) in the form
/Q-u(n. + alAn)dzdt +/ U(—g ~Vn+mn)dldt =0 for any n e W. (3.5)
D

By virtue of (3.3) we can choose the following sequence of functions:
(C) {as} C C=(Q) such that

(C1) lan - alz3(q) < Con~?,
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(C2) ea 20~ ¥ in Q,
(C3) aa =n~! on . where C; is a positive constant independent of n.

Making use of the introduced approximation, we formulate the regularized parabolic problems:

zZita Az = fy in Q, (3.6)

' H

W= -Vz-2z onZ, ‘ (3.7

2(T,z)=0 z€Q (3.8)
where fo € C*(Q) with f5(0,z) = 0 for z € Q and fo=0inT. (3.9)

LEMMA 3.1 The regularized problems (3.6)-(3.8) have unique solutions 2 € WH3(0,T; L3(Q)) n
L=(0, T; W(Q)) with 24| 0)ep € Wh3(0, T; L*(T))).

We shall omit the proof of Lemma 3.1.

REMARK 3.1 We can take the solutions zy,n = 1,2,--- of the problem (3.6)-(3.8) as the test
Junctions in the integral identity (3.5).

As a consequence of assumption (C) we can conclude the following a priori bounds:

LEMMA 3.2 Forn = 1,2, --., let z4 be the solutions of problems (3.6) - (3.8). Then there ezists
positive constants K, K, independent of n, such that

I2al=(q) < K1, ' (3.10)
1Aza]12q) < Kav/a. (3.11)

proof. For simplicity we write z for z,. We put

m(t) = M(T - t) for t € [0, T]

where M is any positive number.
For a.e. t €[0,7), .

/ﬂ 2(z - m)*dz - ./n 4, Az(z — m)tdz + /9 Jo(z - m)*dz
/ 6, Vz- V(2 ~m)*dz + /(z -m)*V3.Va,dz
o o

+/r a(V — 2 )(z — m)*dl' + 'l) Jo(z = m)*ds
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> [ (Vi -m)*ids - o (9= myyae
-2 [P =y ide = % [onda - myar
+ [ sots = my*as
> ~B(TouPlomi@ (6= mPds = [ Gt Ms =T
ot eyt
o E(TerPlim [ =P = g [P
+ L folz - my*da.

On the other hand, for a.e. t € [0,T],

/z,(z m)*dz
- 14 / (2= m)*ds - M / (2 - m)*dz.

2dt

Therefore,

1L [ (o mytPdat g [ (6=
~2(Vanlzm / (s = m)*Vde + / (o + M)(z - m)*dz

for a.e. t €[0,T].

1\

I M 2 |folr=(q):then

L [yt Pas+ 5 [ = my* el
2 -;l(Va.)’an(Q) /0 ((z = m)*)dz

for a.c. t € [0,T].
Applying the Gronwall's inequality to this inequality, we obtain that

[ts = my* Pz <0 foray 1 € .11
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Hence
#(t,z) < m(t) < MT for a.e.(t,z) € Q.

We obtain a similar estimate for —z(t,z) to the above. Therefore we have an inequality of the form
(3.10) with K; = IIOIL“'(Q) -T. :

Next we show (3.11)

/ an(Az)*dzdt
Q

= - / zAzdzdt + / foAzdzdt

Q Q

< / V223drdt + / A fozdzdt
L Q

< mqq/aw+mmmm®=m.

T
Hence,

lAzlL’(Q) < (K;,n)}.

Let us take the solutions ze,n = 1,2, - - of the regularized problems (3.6)-(3.8) as the test functions
in the integral identity (3.5). Therefore forn =1,2--,

-/Q u(a — a,)Azadzdt = -/Q foudzdt.

By Lemma 3.2, assumption (C) and the definition of solution to P(ug), that is, u € L*(Q),

|/Qu(a — a4 )Azydzdi]

< |ulee@ls - aalia@)ldzlraq)
S IM!L-(Q)CoKzn-}
— Oasn —o0.

Hence for each functions fo satisfying (3.9)
/ foudzdt = 0.
Q

This implies that u; = u3 a.e. in Q. Thus Theorem 2 holds.
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Viscosity solutions of nonlinear elliptic PDEs with implicit obstacle

KaTsuyukr Isan }
(Kobe Univ. of Mercantile Marine)

§1. Introduction

In this article we consider the following nonlinear elliptic partial differential equa-
tion (PDE) with implicit obstacle:

(11) { max{—Au+u—fu—Mu}=0 in Q,

max{z — g,u — Mu} =0 on 00,
where 2 € RV is a bounded domain with smooth boundary 6 and M is the nonlocal

operator defined as follows:
Mu(z) =1+inf{u(z+§) | € B,z + £ €0}

It is known that the equation (1.1) is associated with the impluse control problems (cf.
).

Concerning the existence and uniqueness of solutions of (1.1), see [1] and [5] ete.
They obtained them by assuming that there exists a subsolution u satisfying #<g<s
Muon 0. Without this assumption B. Perthame showed the existence and uniqueness
of viscosity solutions of (1.1) (cf. [6]).

Our main purpose is to get the comparison principle and existence of viscosity
solutions of (1.1) by applying the results in [3] and [2]. By these methods we can treat
the nonlinear PDEs of the type (1.1) whose principal parts are in some classes of general
(possibly degenerate) elliptic operators.

§2. Assumptions and Definitions

- We make the following assumptions.

(A1) RCcRV is a bounded and convex domain with smooth boundary 89.
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(A2) f,9€ C() and f,g200n Q.
Let O be a subset of RY. For any fanction w : O — R U{—00,+00}, we define the

fanction u*, ue : O = RU{—00,+00} by
w(e) = limsup{a(s) | 9 € O, ly— 2] <7}, we = =(-)

For each z € O, we set
stain) = {0, ) RV 8% | ) S o) + (=)

Lix(y-)y- ) +oly-of) wO3y=s]
and J5 u(z) = —J5*(—u(z)). Here §N denotes the set of all N x N real symmetric
matrices and (-,-) is the Euclidian inner product in RY. We denote by J3*u(z) and
J% " u(z) the following sets:

J_’d"'u(z) ={(pX) € RY x$V| Hzn,Pn) Xa) €O % RY xsV
such that (ps, Xa) € I u(za) and
('m“(zn)vaXu) - (=, u(z), py X)asn— +oo},

wmd T (@)= —T5(-u(2):
We give the definition of viscosity solutions of the following nonlinear elliptic PDEs:

(2.1) max{u + F(z, Du, D*u),u — Mu}=0 in 1,
where F is a continuous fanction on @ x RV x $V satisfying the degenerate ellipticity

condition:
F(z,p,Y) S F(z,p,X) forallze®, p€ RY, X,y e$V andY 2 X.
Definition 2.1. Let u be a function defined on Q.
(1) w is & viscosity subsolution (resp., supersolution ) of (2.1) if u*(2) < oo (resp.,
u,(2) > —00) on Q and
(22) max{s*(2) + Fz,p,X), v"(2) - Mv"(£)} S 0
(23) (resp., mn{"‘(z) + F(e,p, X), u.(z) - M"(z)} 290)
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for all z € Q, (p,X) € Jot u*() (zesp., (p, X) € T u(2)).
(2) u is a viscosity salution of (2.1) if » is a viscosity subsolution and supersolution of

(2.1).

§3. Main results

Our main results are stated as follows. See [4] for the details.

Theorem 3.1. Assume (A.1) and (A.2). Let u and v be, respectively, a viscosity
subsolution and a supersolution of (1.1). If u and v satisfy
(3.1) max{u® — g,%* — Mu"} < 0 and max{v, — g,v. — Mv,} 20 on 8Q,

then u* < v, on 1.

Theorem 3.2. Assume (A.1) and (A.2). Then there exist a unique viscosity

solution u € C(fQ) of (1.1) satisfying max{u — g,u — Mu} =0 on 89.

In what follows we mention the sketch of the proofs of Theorems.

Proof of Theorem 3.1. We may assume u (resp., v) is upper (resp., lower) semi-
continuous on 3. We use some perturbation of viscosity subsolution. Foi each m € N,
um = (1 —1/m)u —1/m is a viscosity subsolution of the following PDE:
mu{—Au,,.+u,,.—f,u,,.-—Mu,,.}+l=0 in Q,

(3.2) 1 m
max{um—g,u,,,—Mu,,.}+;§0 : on 01,
In order to prove u,, < v on I for all m € N, we suppose the contrary, i.e.,
supg{(m, — v) = 0 > 0 for some mqo € N. We take z € {1 such that 8 = u,,,(z) - v(z).
Then by (3.1) and (3.2), we may consider z € Q.
Let &(z,y) be a fanction defined by

#(2,3) = tmy(e) = s — 2l ~9(s) = yle ~3f* on AT
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and let (2,,v,) € @ x @ be a maximum point of $(z,y). From the inequality § <
&(z,,¥.) and the semicontinuity of %m,, v, we have the behaviors of 2,, ¥., um,(2.),

and v(y,) as e — 0:
Z4)Ye 2, umo(zl) - umo(z)i v(yl) - v(z)i %IGC - y‘lz — 0.

Thus we can consider 2,, y. € 0. Moreover there exist X,, Y, €$" such that
1 73,+ . 1 e
(@~ w) Xo ) € Tg¥ (umo(20) = 2o — 21*), | S(20 — ). Yo | € Jg70(n),
3 I O X, 9] 3 I —I ) ) '
_E(O I)é(o‘ —Y.)éz(—I I) (I = identity matrix).

We remark that ((z. — v.)/€ + 4z, — 2> (2. — 2), Xu + Z.)€ T3t ttmo(24) (24 = 42, -
z|*I+8(z, —2)® (2, —z)). Hence using the facts that u,,, and v are viscosity subsolution

of (3.2) and supersolution of (1.1), respectively, we obtain the following inequalities:

max{—tr(Xe + Z) + tmy(22) = F(2e)s tmy(20) — Mumy ()} + 5= S0,

max{—trY, + v(y) — £(ve) v(ve) — Mo(y.)} 2 0.

From these inequalities, we get a contradiction. Therefore we have u,, < » on Q for all

m € IN. Letting m — oo, we obtain the result. §

Proof of Theorem 3.2. 1t is easily seen that there exist a viscosity subsolution u
and a supersolution @ of (1.1) such that max{u* — g,u* — M»*} < 0 and max{%, —
9, % — Mu,} 2 0, respectively on 941.

- We define the set S and the function u as follows:
8 = {u : viscosity subsolution of (1.1) | max{u* — g,4* — Mu*} < 0 on 001},
u(z) = sup{v(z) |v €S} (z€q).

We observe that Perron’s method can be used (cf. [2]). Therefore we obtain that u is
a viscosity solution of (1.1) satisfying.

(3.3) max{x* —g,s* — Mu*} <0 on O0.
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On the other hand, using the barrier argument we get
(3.4) max{u, -~ g,u, — M4,} 20 on Q.

Hence it follows from Theorem 3.1 that u* = » = u, on { and thus u € C(Q). Then
(3.3) and (3.4) yield max{u — g,u — Mu} = 0 on 60. Theorem 3.1 also implies the

uniqueness of viscosity solutions of (1.1) satisfying the boundary condition. §

§4. Some remarks

In this section we shall give some remarks for Theorem 3.1. First we consider the
boundary value problem of Dirichlet type, whose boundary value is interpreted in the

viscosity sense:

4.1) { max{u + F(z, Du,D*u),u— Mu} =0 in Q,

max{u — g,u — Mu} =0 on 09,
where F is a continuous function on I xRN x$¥ xR satisfying the degenerate ellipticity

condition.

Definition 4.1. Let u be a function defined on 0.

(1) u is a viscosity subsolution (resp., supersolution) of (4.1) provided u*(z) < oo
(resp., uy(z) > —00) on 1 and for all z € 0, (r,X) € .f"—l'+u‘(z) (resp., (p, X) €
f‘—:-'"-u.(z)), ifz € 1, then u® (zesp., u,) satisfies (2.2) (resp., (2.3)) and if 2z € 80,
then

max{u*(z) + F(z,p, X), u"(z) — Mu*(2)} < 0
or max{u*(z) - g(z), u"(2) — Mu*(2)} < 0
(resp., max{u,(2) + F(2,p, X),us(2) - Mu,(2)} 2 0
or max{u,(z) — g(2), uu(z) — Mu, ()} 2 0).
(2) u is a viscosity solation of (4.1) if w is a viscosity subsolution and supersolution of

(4.1).

We assume a kind of continuity for F:
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(F.1) There exists a modulus of continuity v such that
F(y,o(z —),Y) - F(z,a(z — ), X) S w(alz — 31 + |2 - 9])

fora>1,2 y€0and X,Y €SV satisfying

(3 9)s(5 %) em(4 7).

Theorem 4.1. Suppose (A.1), (F.1)and g € C(Q). Moreover suppose that F is
uniformly continuous with respect top € RY. Let u and v be, respectively, a viscosity
subsolution and a supersolution of (4.1). If v and v satisfy u* = u, and v* = v, on 01},

then u* £ v, on 0.

Next we consider the boundary value problem of Neumann type:
max{u + F(z, Dv,D%s),u—Mu}=0 in 1,
(4.2)

mu{h,u—Mu}zo on 81,
On

where n(z) denotes the outward unit normal to Qat z € 09Q.

Definition 4.2. Let u be a fanction defined on 1.

(1) u is a viscosity subsolution (resp., supersolution ) of (4.2) provided u*(z) < o
(resp., ua(2) > —0) on flandforallz €, (p, X) € f’ﬁ-‘"’u‘(z) (resp., (p, X) €
Ja u.(2)), if 2 € 0, then u* (resp., u.) satisfies (2.2) (resp., (2.3)) and if z € 89,
then

max{u*(z) + F(2,p, X),u"(2) - Mu"(2)} £ 0
or max{(n(z),p),"(2) — M'u°(z)} £0
(resp., max{u,(2) + F(2,p, X),us(2) — Mus(2)} 20

or max{(n(2), P}, wa(2) — Mus(2)} 2 0).

(2) u is a viscosity solution of (4.2) if u is a viscosity subsolution and supersolution of

(4.2).
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Theorem 4.2. Svppose (A.1), (F.1) and the uniform c. atinuity of F v.ith respect
to {p,X) € RYN . 3V. Let u and v b., respectively, a viscosity subsolution and a

supersolution of (4.2). Then u* £ v, on Q1.

We omit the proofs of Theorems 4.1 and 4.2 because the methods are similar to

that of Theorem 3.1.

References

(1] Bensoussan, A. and Lions, J. L., Contrélle impulsionnel et Inéquations Quasi-
Variationnelles, Dunod, Paris, 1982. -

[2] Crandall, M. G., Ishii, H. and Lions, P. L., User’s guide to viscosity solutions of
second order partial differential equations, preprint.

[3] Ishii, H. and Lions, P. L., Viscosity solutions of fully nonlinear second-order elliptic
partial differential equations, J. Differential Equations, 83 (1990), 26-78.

[4] Ishii, K., Viscosity solutions of nonlinear second order elliptic PDEs associated with
impulse control problems, to appear in Funkcial. Ekvac..

[5] Perthame, B., Quasi-variational inequalities and Hamilton-Jacobi-Bellman
equations in a bounded region, Comm. Partial Differential Equations, 9 (1984),
561-595.

[6) ————, Some remarks on qnﬁ-mﬁtiond inequalities and fhe associated

impulsive control problems, Ann. Inst. Henri. Poincaré, 2 (1985), 237-260.

54



Limit Shape of the Section of Shrinking Doughnuts

NAOYUKI ISHIMURA*

Department of Mathematics
Faculty of Science
University of Tokyo
Tokyo, 113, JAPAN

Abstract. We discuss the limit shape of the generating curve of symmet-
ric tori which are shrinking to a circle by the mean curvature flow. The
problem naturally arises from a joint work with K.Ahara. Employing
the backward heat kernel analysis introduced by G.Huisken we prove
that it is a circle even under a little more general hypothesis than our
previous work.

§1 INTRODUCTION

In this article we solve the question raised in a joint work [1] with
K.Ahara; how is the limit shape of the section of symmetric 2-tori which
are shrinking to a circle by the mean curvature flow.

The mean curvature flow problem, in its typical fuim, is to find the
family of hypersurfaces Fy : M, < R (n > 2) satisfying

(1) [ %—(x,t\:—ﬂ(m,t)-N(x,t)

F(z,0) = Fy(z) : My = R™,

where N denotes the outward unit normal and H is the mean curvature
with respect to N. Notice that in terms of the induced metric on M,
the right hand side of (1) is the Laplace-Beltrami operator Ap, on M,.

We briefly recall some known facts about this problem. When the ini-
tial surface M, is strictly convex, G.Huisken [10], employing the method
of R.Hamilton [9], showed that (1) shrinks Mo to a round point within
finite time, and also proved that for the area preserving rescaled flow
M, really converges to a sphere in the C°-topology. Later M.Grayson
[7] gave the counterexample which shows the convexity assumption in
Huisken’s theorem cannot be omitted; not all compact hypersurfaces
with genus zero shrink to a point. Our previous work [1], on the other
hand, dealt with the symmetric 2-torus and proved that under a rather

* Partially supported by Grant-in-Aid for Scientific Resea,rch,2 Ministry of Education,
Science and Culture I

(M. 0%40095)
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restrictive hypothesis the torus might be shrunk to a circle by the mean
curvature flow (see Theorem 2.1). OQur idea is based on applying the
method of M.Gage and R.Hamilton [6], which discuss the curve short-
ening problem, to the equation for the generating curve.

The aim of the present article is to discuss the shape of the generating
curve of symmetric tori which are shrinking to a circle by the mean
curvature flow and to show that in many cases it is a circle. As to our
previous work [1] it is so (see Corollary 2.3).

This limit shape problem is related to the rescaled flow analysis in
Huisken’s work [10] and to the problem of the formation of singularities
in curve shortening (see [3]). It also corresponds to the self-similar or
homothetic solutions. See (2] [11]. Indeed, in the limit we do arrive at
such solutions.

The method of our proof is to utilize the backward heat kernel, which
is first introduced by M.Struwe [12] for the study of heat flow for har-
monic mappings and later used cleverly by Huisken [11] for the mean
curvature flow. - We mainly follow the idea of Huisken. In the limit
the effect of the rotation around the axis is dropped and the problem
becomes the ”plane” situation.

The author is greatly indebted to Prof. Hiroshi Matano for helpful
suggestions and to Dr. Kazushi Ahara for stimulating discussions.

§2 NOTAT[ON AND RESULTS

We use the same notation as in [1). But we present it for completeness.

Let M; be a family of an embedding of a 2-torus F, : T? < R3 such
that they are rotationally symmetric about the 2-axis. We represent
them by

Fi(u,0) = (f(t,u) cosp, f(t,u)sing, g(t, u)),

where u € S? is a parameter independent of ¢ and 0 < ¢’ < 27r. We call
M, doughnuts hereafter. Let C; be their generating curves, i.e., Cy are
the intersection of M, with the half zz-plane {(z,0,z)|z > 0}. C, are
represented by ’

C‘(u) = ;(f(tau)’oa g(t’ u))
We define the speed v(t,u) of C; by
v(t,u)’ = f'(t,u)’ +4'(t,u),
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where ' = 0/0u. The mean cur\ature H(t,u) of M, is then given by
P Y ] % [}
Heu)y =199 9 1
v fv
Here
. flg" — f'g'
m — 1)3

: the meridional sectional curvature.
ki = =— : the latitudinal sectional curvature.

Notice that k,, is a planar curvature of the generating curve C, and k;
is a curvature of rotation. Since the outer unit normal N on M, is given

by ‘
(g g . f!
N—(vcoscp,vsmcp, > )

the equation (1) is described as the one for the generating curve:

@) 5i() =Gt m (2,

or explicitly

with the periodic condition

{ f(tu+27) = f(t,u)
g(t,u+2m) = g(t,u)
and the initial condition.

We regard (2) as the perturbed plane curve shortening equation and
hence, dropping the y-coordinate, we take a coordinate (z, z) only in the
sequel. ’

For later use we denote the length of C; and the area enclosed by C
by L and A, respectively:

L=/ds, A=_1_/ < F,N > ds,
Cg 2 CC

where ds = vdu is the arc-length parameter.
Our previous result is now stated as follows.
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THEOREM 2.1 ([1]). Suppose M satisfies the following assumption (A).
Then the mean curvature flow shrinks My to a circle within finite time.
(A) There exists a positive constant € such that

The next question naturally arises; how is the shape of the generating
curve becomes? Is it becoming circular as in the case of plane curve
shortening [4][5]? The answer is positive even in a little more general
situation. This is the focus of this article.

Now let (f,g) be the solution of (2). We assume (f,g) converges to
(1,0) smoothly as t — T. Let p(X,t) be the backward heat kernel at
((1,0),T), namely (see [11][12]),

_ 1 X2 ‘
(3) p(X,t)—mexp{—m} t<T.

Here we put X = (f —1,9).
~ We next define the rescaled immersions X = (f—1,9) by

|

V2T - 1)

Similarly we denote the rescaled quantities by ~ (for example, Z, Z, ).
Our main result is then stated as follows:

@  5.D-= X(ot),  E(t) = log(T ~1)

THEOREM 2.2. Suppose the solution (f,g) of (2) converges smoothly
to (1,0) as t — T. Suppose also that the isoperimetric ratio L2 JA of

C, is bounded as it converges. Then for each sequence ’;j — 00 there

is a subsequence 7_,',; such that the generating curve C~ of M 7 =
ik ik
F(-, t ;i) converges smoothly to a unit circle centered at (1,0).
In particular when C, stays convex as it converges the corresponding
isoperimetric ratio is bounded and so the result holds.

COROLLARY 2.3. In the situation of [1] the limit shape of its generating
curve is a circle.

We remark here that the boundedness of the isoperimetric ratio seems
to be an unpleasant assumption. But in [8] Grayson showed that in
a figure-eight curve shortening the unboundedness of the isoperimetric
ratio is equivalent to that the loops bound regions of equal area. We
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also notice that in a convex plane curve shortening Gage [4] proved that
the isoperimetric ratio is monotone decreasing and so it is bounded.

(1]

(2]
(3]
4]
(5]
(6]
(7
(8]
(9]
(10]
(11]

(12]
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On Burgers’ type equation with nonlocal term

Kazuo Ito

1. Introduction
We consider the initial value problem:

‘ , .
u + a(%), + b(/o u(z + fs)u.(z + 8)ds); = uz,t > 0,z €R,

)
u(0, ) = uo(z), € R,

where u = u(t, z) is a unknown real — valued function with the constraint

lim u=0,
z—%o0
and a,b and g are constants such that a # b and § > 1. We remark that if § = 1, then
(1) turns to Burgers equation.

Here we state the motivation to consider (1). Majda and Rosales [ 2 ] proposed the
following equation:

2 0
u + a(%), + b('/; u(z + Bs)u,(z + s)ds). = 0,t >0,z € R,

2
u(0,2) = uo(z), z € R.

Equation (2) arises as an asymptotic approximation which governs the growth of multidi-
mensional perturbations in planar detonation front solutions of the equations of reactive
gas dynamics in two space variables. In particular, if ¢, = u, then ¢ describes the
evolution of a 2 — D perturbation in the primary planar front. In (2), Gardner [1] has
proved the local existence theorem for smooth solutions, and also proved that smooth
solutions develop shock in finite time.

We will study the solutions of (1) with eu,, in the right — hand side, and plan to
construct the solutions of (2) by putting ¢ close to 0.

In this paper, to (1), we show the local existence and uniqueness theorem and the
global existence theorem with small initial data and the large — time behaviour of solu-
tions.
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Notations L?,1 < p < 00, denotes the usual Lebesgue space on R with the norm
| |[p- W1 denotes the usual Sobolev space on R with the norm |-|,;. For 0 < T < 00, X¢
denotes the space of bounded and continuous functions from { 0,T) to W!. X denotes
the subspace of X, such that

sup |u(t)|; + sup(t + 1)1/’|u,(t)|1 < o0.
€0 20

S(t) is the operator defined by

(sOu) = [ Sexp(-EZ gy
~o0 V/4nt 4t ’
i.e.S(t)u is the solution of the linear heat equation

w,—w,s=0,t>0,z €ER,

w(0,z) = u(z),z € R.
We alter (1) to the following form

(3) u(t) = S(t)u — /o‘ S(t - 'r)(g-u’ + b‘[o u(z + fs)u.(z + 8)ds),(r)dr,
and study the solutions of (3).

2. Results
The existence and uniqueness theorem is the following one.

Theorem 1 (i) ( uniqueness ) For 0 < T < oo, if (3) has two solutions u and
vin Xp, thenu=v,
(i1) ( local ezistence ) For any ug € W' | there ezists T > 0 such that (3) has a solution
in XT.
(iii) ( global existence with small initial data ) Suppose that up € W' and |uo|y, is
sufficiently small , then (3) has a solution in X.

Now we observe the large — time behaviour of solutions of Theorem 1 (iii). To this
end, we consider the self — similar solution of (1) of the form
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b ()
Vi+1l Wi+ 1”
Equation that ¢ should satisfy is the following one :

4 BO+56 =20 O+ [" 6 (6+5m) '€+,
where
z
=T

In addition, we impose the following condition on (4):

®) [ ©d=m,

where m is a given number.
We need the existence theorem of the solution of (4) and (5).

Theorem 2 ( ezistence of the self — similar solution )
Suppose that [m| is sufficiently small , where m is in (5). Then (4) and (5) have a unique
C! solution .

From Theorem 1 (iii) and Theorem 2, we have the following result.

Theorem 3 ( large — time behaviour of solutions )

Let ¢ > 0 is an arbitrary and sufficiently small parameter . Suppose that uy €
Wi lugliy < Ke and [*2 |ug(z)||z|dz < oo , where K is a constant defined in the
proof . Let u be the solution of (3) and ¢ be the solution of (4) and (5) with m =
'+ ug(z)dz. Then , we have

05t )~ 7= 8 (e

o).
<C (1 +1 —(k+1)/2+4¢
= 11— (Ke) M uo)y,y )

Jor t >0 and k = 0,1, where C is a constant independent of t,k and ¢, and |up|, =
luol1 + [23 Juo(2) ] dz.
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3. Outline of the proofs
In this section, we show the proof of Theorem 1 (iii), Theorem 2 and Theorem 3
shortly. Here and below, C denotes a generic constant.

Outline of the proof of Theorem 1 (iii)

First we note that a simple computation shows

©) | [ ule + Bs)ola + s)dsls < (B~ 1) Mulaloly

for u,v € L.
We define the mapping ® : X — X by

(@u)(t) = S(Ouo— [ 5 =1)(Gu+b [ u(z + fo)usls + o\l

Then,applying (6), we obtain the following basic estimates for u and v in some ball
centered at 0 in X :

[(@u)(t)lx < luols + Cllull%,
[(@u)=(t)ls < C(t + 1) |uoly,s + C(t + 1) ||ull,
where
lullx = sup u(t)ls + sup(t + )" us (D).
The above estimates lead to the following inequality
l|®u - @v]|x < Cluolyllu — vllx

for u and v in some ball centered at 0 in X. Applying the contraction mapping theorem,
we conclude that @ has a fixed point. This completes the proof.

Outline of the proof of Theorem 2

First we alter (4) to the following integral equation:
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M s @=en-5) 40

+ [ ep-E3 TN E 0 (7 41 [7 6 (1+50) 6'n+ ),

where ¢ o= ¢ (0). We assume that | ¢ is sufficiently small.
PutY ={¢ € C}(R); || ¢ |ly < o} where

16 lly = sup(1-+16D°] ¢ @1+ supexp(S) 5 (©)
£<0 £20

+sup(1+ [€])*7!| ¢'(€)| + sup(1 + |€l)"’exp(§)l ¢'(9),
£<0 €20

and o > 2 is a parameter.
We define ¥ : Y — Y by ¥(¢) = the right — hand side of (7), and estimate U(¢)
by using Y — norm to get the inequality

1¥(¢) - ¥(W)lly < C| ¢olll ¢ — ¢y

for ¢, in some ball centered at 0. Applying the contraction mapping theorem, we
conclude that (7) has a C? solution.
On the other hand, we can show that the mapping

o= [0 @

is one — to — one provided that | ¢ | is sufficientry small. Thus, for a sufficientry small
m, there is a initial data ¢, such that e (§)dé = m. This ¢ is the solution we
want to look for.

Outline of the proof of Theorem 3
For any 0 < T < o0, we put

llullr = sup (¢ +1)"*~Ju(t)h + sup (¢t + 1)*~fu,(t)];.
0<t<T 0<t<T

We remark the following fact:
(*) If

/+w w(z)dz = 0,

=00
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then
+00
105S(t)wl]y < Ct—k+I2 /_  lw(@)llslds,
fork=0,1,2,. ...

In our case, w = up— ¢.
we estimate

U(t,z) = u(t,z) — '«%——105 (—\/-ti-l-_—l)

by using L!'— norm and applying ( * ), then we have
Uliz < Cluol + (Ke)™ fuoual|U]|z-

By the asumption, (K&)~!|up|;; < 1. Therefore we obtain

Cluo|s
1 — (Ke)uols,

Since T is arbitrary, we complete the proof.

WUz <
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Mean ergodic theorems for integrated semigroups and
integrated cosine families

HIROKAZU OKA
Department of Mathematics, Waseda University

Let (X, || ||) be a Banach space. We denote by B(X) the set of all bounded
linear operators from X into itself.

Let n be a positive integer, which is fixed in this paper.
A family {U(t) : ¢t 2 0} in B(X) is called an n—times integrated semigroup, if
the following (a), (b), and (c) are satisfied :

(a) U(-)z : [0,00) — X is continuous for z € X,

(b) U@)U(s)z = Zn-l-_l)'( ".'H(s +t—r)*U(r)zdr — [, (s +t—r)*"U(r)zdr)
for z € X and s,t > 0, and U(0) =0,

(c) It implies # = 0 that U(t)z =0 for all t > 0.
Let {U(t) : t > 0} be an n—times integrated semigroup. If we assume the
condition ;

(d) There is a constant M > 0 such that |U(¢) — U(s)} £ M|t — s™| for
s,t 20,

then there exists a unique closed linear operator A such that (0, 00) C p(A)
(the resolvent set of A) and

R\ A)z(=(V—-A)'2) = / Ame~MU(t)zdt for z € X and A > 0.
0

The operator A is called the generator of {U(t) : ¢t > 0}.

In this talk, we give a mean ergodic theorem for n—times integrated semi-
groups and show that the ergodic theorem extends the mean ergodic theorem
which has been proved by Shaw [5] recently. Also, we establish a mean ergodic

theorem for n—times integrated cosine families.
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The domain, the null space, and the range of an operator B in X will be
denoted by D(B), N(B), and R(B) respectively.

THEOREM 1. Let A be the generator of an n—times integrated semigroup {U(t) :
t > 0} satisfying the condition (d). We define an operator P by

{ D(P) = {z € X : limy—oo n!U(t)z/t" exists}
Pz =lim;_,o, n!U(t)z/t" for z € D(P).

Then P is a bounded linear projection with ||P|| < M, R(P) = N(A),N(P) =
R(A), and
D(P) = N(A) ® R(4) = {z € X : {nlU(t)z/t" : t > 0} contains a weakly

convergent subsequence as t — oo},

As a direct consequence of Theorem 1, we have the following corollary

which has been given by Shaw [5] recently.

COROLLARY 2. Let A be the generator of an n—times integrated semigroup
{U(t) : t > 0} satisfying the condition that |U(t)]] = O(t") ast — oo. We
define an operator P’ by
D(P') = {z € X : lim;_oo BEY [} U(s)zds exists}
{ P'z =lim¢o -(:'T*'.é)-: fot U(s)zds for x € D(P').
Then P' is a bounded linear projection with R(P') = N(A), N(P') = R(A), and
D(P") = N(A)®RA)={ze X : {%’ﬁx f(: U(s)zds : t > 0} contains a weakly

convergent subsequence as t — 00},

By Theorem 1, we get the next result which was shown by Hashimoto (2]

in the case where n = 1.

COROLLARY 3. Under the assumption of Theorem 1, the following conditions

are mutually equivalent :
(i) y € A(D(A)N R(4)) ;

(ii) s —limajo R(); A)y exists ;
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(iii) £ =3 — limgoo B fot U(s)yds exists ;
(iv) There is a sequence t; — 0o as k — oo such that
. t ,
T=w-—limg—oo -;-':—' o U(s)yds exists.

Moreover, the limit z is the unique solution of Az =y in R(A).

Similarly, we can prove a mean ergodic theorem for n—times integrated
cosine families {C(t) : ¢ € R} which was introduced by Kato [4]. See also
Arendt and Kellermann [1].

A family {C(t) : t € R} in B(X) is called an n—times integrated cosine
family, if
(1) C(-)z : R — X is continuous for z € X,
(2) C(t) = (=1)"C(-t) for t > 0 and C(0) = 0,
(3) Jo C(r)(C(t) — &)adr + (C(s) ~ ) [ C(r)adr
= 4 "’“(s +t—r)"C(r)zdr — [J(s +t —r)"C(r)zdr] for z € X and
s,t >0,
(4) It implies z = 0 that C(t)z = 0 for all ¢ > 0.
Let {C(t) : t € R} be an n—times integrated cosine family. If we assume
the condition ;
(5) There is a constant M > 0 such that ||C(t) — C(s)|| < M|t™ — s"| for
s,t 20,

then there exists a unique closed linear operator A such that (0, 00) C p(A)

and

[}
(A2 —-A) 'z = / An=1e=MC(t)zdt for z € X and A > 0.
0

The operator A is called the generator of {C(t) : ¢ € R}. Theorem 4, Corol-
laries 5 and 6 are the corresponding results to Theorem 1, Corollaries 2 and 3

respectively.
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THEOREM 4. Let A be the generator of an n—times integrate(i cosine family
{C(t) : t € R} satisfying the condition (5). We define an operator P by

{ D(P)={z € X :lim;_.o -(':J..';l‘)-' fo' C(s)zds exists}
Pz = lim,_.oo G2 J) C(s)zds for = € D(P).

Then P is a bounded linear projection with ||P|| < M, R(P) = N(A),N(P) =
R(A), and

D(P) = N(A) @ R(A) = {z € X : {GH¥ [, C(s)zds : t > 0} contains a

weakly convergent subsequence ast — oc}.

COROLLARY 5. Let A be the generator of an n—times integrated cosine family
{C(¢) : t € R} satisfying ||C(t)|| = O(t") as t — co. We define an operator P!

by
D(P') = {z € X : limyco SFF [ Jo C(r)zdrds exists}
P'z = limoo SR [¥ [2 C(r)zdrds for z € D(P').

Then P' is a bounded linear projection with R(P') = N(A), N(P') = R(A), and
D(P') = N(A) @ R(A) = {z € X : {2 [ [, C(r)zdrds : t > 0}

contains a weakly convergent subsequence as t — 00}.

COROLLARY 6. Under the assumption of Theorem 4, the following conditions

are mutually equivalent :
(i) y € A(D(4) N R(4)) ;
(ii) s —limxyo R(A?%; A)y exists ;
(iii) z = s — im0 ‘?—:’f# f(: Iy [s C(w)ydwdrds exists ;
(iv) There is a sequence tx — 0o as k — oo such that
z=w—liMg—oo %12 f(; *Is fo' C(w)ydwdrds exists.

Moreover, the limit z is the unique solution of Az =y in R(A).
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EXAMPLE. (Arendt and Kellermann [1], Hieber [3])

We consider an elliptic differential operator A = ZI al<m aoD® with some
constant coefficients on LP(R"),1 < p < 00. Such an operator A is called elliptic
if the polynomial 371 < m 4!z is elliptic (i.e. EM-"' qZf -+ -z = 0 implies
Ty =---=2z,=0). IfReE|a|5m aqil?lz® =0 forz € R" and m > 2,4 (with
a suitable domain) generates a k—times integrated semigroup {S(t) : t > 0} on
LP(R™),1 < p < oo, with ||S(t)]] < ct* for t > 0 and with k > 2, where c is

some constant. For details, see Hieber [3].
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2XTHERMAIRIC B 3 Navier-Stokes HOBMORBIC>WT

MEKE UMK - HR
Midn ZEEX-B

§1 MACRR.

Q(CR}) BHHARBERTEOHAIDR—Bc CTRTH S LT 5. Qr =0x(0,T)

EEVWTROVBMERAERBEEERLS

'%%_Au+u-Vu+Vp=0, in Qr,
(NS) 4 divu=0, in Qr,

u=0, on 8Q x (0,T),

L “|t=0 =a,

CCiEERY b u = (u(z,t),usz,t)) BLXUEN p= p(z,t) REAEK. a =

(a1(z,t),82(z, 1)) BREASHPMETH 5,

ccviac I2(0) kXt s (N.S) ORMABNBMOEEL £ Dt - o TOMIE
BHEBE<LV, QR (n > 3) OARFAROBEREMO L2 -norm 8L U BE O
LP-norm ORMMic & 2EAHB S TWS ( Borchers-Miyakawa [1], [2]. Iwashita

Bhe n=20t&ik |u(t)ll 2 003HMmoTVS ( Masuda [11]),

ﬁa.aeﬁ«n&169uﬁaunio(mﬁoﬁMTaatﬂmw(umuwwﬁ

BEl-+cEThS
(1) u € C([0, T); L3 () n C*((0, T); L3 (1))
(2) u(t) € D(A) for t >0, Au € C((0,T); L3(Q))
(3) uRKOREML T,

(A-N.S) dt

u(0) = a.
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{d—u-+Au+P(u-Vu)=0, 0<t<T,



CCiR PR LX) H»S L?,(ﬂ) ~OEZHE, A= —PA, (D(A) = {u € H*(Q);u|sq =
0} NL2) it Stokes (EAIR 2 &b+,
(A-N.S) OROEHELBREIL>DVWTRO L S HERE B,

EE. a€Li() E+3, coLs (0,00) Lo (NS)OMM u S—BOIEES 3.
B ulRoMREEL T,

(1) (smoothness) u(t) € C*((0,00); D(A?)) £# L 0<a <1,

(2) (decay)

o(tt/r-1/3), for 2 < p < oo,

(1.1) lu()ll, ={ VB, forp e o
o o(t~2), 0<a<l
(12) a=u(o)l —{ VD, am
» o(ti/r-3/2), 2<p<oo,
(1.3) ()l -{ ot ED),  p=oo;
(1.4) A% u(t)[ls =o(t~=~1), 0<a<l,
ast — oo.
§2 X

EEOEHIRUTORMEXEETSH 2,

WB1.c>00<6<1/2 v,ve D(AV)NL®L 4+ 3,
= I(A+€)~°P(u- Vo)|l < Csl|AY?~*ulls|| AY )],
L Ciid e, u,vick S VER,
TR
OBABOLER ABRERBPER/RABRVCLERERT 5,
MBI OROLI BWARKERAR F5(-,) ¥ERTSE 3

Fs(u,v) = w-‘li_t.%(A +€)7%P(u-Vv) u,ve D(AY?*)n L>
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@ Fs% density #AWT D(AYV?) LicikR L b@icd LT, M1 XD ELTHs
Bohs, '

wE2.
(1) [|Fs(u, v)llz < CsllAV3=ulls||AY2v]ls, u,v € D(AY?)
(2) (F5(“)v)v A5¢) = (P(u . V”))¢) foru,v e D(Allz)r € D(As)
(3) A®Fy(u,v) = P(u- Vv) for u,v € D(AY?) N L™
HELOMEHRTHECRGQEHAROIUNICHT S Heinz ORFACERT 5 &
(2.1) (=A +€)~8 P(u - Vo)lla < Csll(—A) />~ Sullafi(~A)"/?vla

2Bhif+5Ts 5 (KatoFujita [9]BM) o (21) R—A+A0 R k13 5 BEAROR
HRFREAVTRSWIRORFRACL>THON B,

Galesre) S prpple =4l (0 <a<)

=L

Galz,pr€) = r—(a)—r}fa fo A=*G(z, 3, ¢ + N)dA

o i Gz, y,e) it (A +e) 'oQic B 3 Green kernel T & 3.
—4. XROFHEIR utuo LFEtBs0clvwoh b,
HE3. ueDAY)(1<8<2) e+ 3, CcOLE2<p<ookHLT
lulloo < Capt/2=212||A a3~ (llullz + [|A*/*ull2)”
(cccueD(A?), f=2s/(2+p(s 1)) REL Ciid s 0B & B M
¥ 3 (2 n =2z B} 3 Gagliardo-Nirenberg O A&

lull, < Co?lull3/?1Vull} ™" we HY(Q), 2<p<oo

lulloo < Collulli~llullg.  ue H*(R)
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(2 La=2/2+p(s—1) BLU
IVulla = |A'?ull;  u e D(AY?)

L&hfBohs,

3 EHROIEH DR
BEOBEEZRTICIE> &D iteration scheme

ug(t) = e~*4q,

. :
uj41(t) = e *4a -/ A7 (-0AR _ (uj,uj)(s)ds, 1/2<y<1
0

LT, AoS3HmMm, A* 0<a<]l) ks, BNALHE2 LD FiE
3 %,

Kja = sup t*[|A%u;(t)|l2
0<t<T

EBHE,. XE8 3,
Kj41,a £ Koo + Ci-yB(7 = a,1 =) K; 4_172Kj 1 /2-
LcdtsT
k)' (T) = ma‘x{K}n-l/2(T)’ Kj,1/2(T)} (j = 0’ 19 te ))
ﬂ‘v = Cl-'v max{B(1/2, 1- 7)’ B(7 - 1/2’ 1- 7)}
EBL
ki1 < ko + By (k;)?,

2RT, koS pEF O EBHARIITSE bbb, BIFFEBICLT uj4 —uj%
LT u; BRI THIE LNV BRuBHICRICENTENS,
COHI '

(1) llall < (4By) oL u(t) RKEMELD, ||[A%u(@)]] <Ct*0<a<1l%
83,

(2) MMELRO», TBDB a€D(A) (e>0) RS BFHM u(t) DELEM T
i T = (48,[|A%a|))-1/* & mh 3.
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SoRABARu(t) L AV u(t) 2 b TBAMB T LIED, 2RI AVF-BR

lu()IE +2 /o IV u(r)2dr = [jall2

& a priori il
lA*u(@)l; < ||A%allf exp(Cellall}) 0<e<1/2

285, CHoOHBEERULDDOEHAMIE > 0T regularity Be 5 C 2 HVWHIE
MR KENICERTE3 L tbh 3,
MoOBTEIRE T Masuda [11]o R XD

lu()llz =0 t—0

MBONECERERT 5o TRz kD (2) 15 JA%u(t)]]2 = o(t~2) #78 5 h Gagliardo-
Nirenberg RS Rk b L? BEuNB>h 3,
RICHO LF G2 H6HE 3 ic

A 2u(@)llz = o(t=*/?)

EHWp=logttAuLicrbBOh I,
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Nonlinear Scattering for Long Range Interaction
Tohru O0ZAWA (RIMS, Kyoto University)

In the scattering theory for nonlinear waves, the basic idea is that for
large times the solutions of nonlinear wave equations behave like the
solutions of the corresponding free equations. This is possible only
when we can take the point of view that the nonlinear interaction has no
effect for large times, which in turn imposes restrictive conditions on
the degree of nonlinearities and on the space dimensions in connection
with decay rate in time of the free solutions. Even in the small data
setting the conditions often exclude the possibility of scattering theory
for many famous equations especially in lower space dimensions, such as
the (modified) K-dV equation, the (derivative) nonlinear Schrodinger
equation in 1+1 dimensions, the Klein-Gordon equation with cubic (resp.
quadratic) nonlinearity in 1+1 (resp. 1+2) dimensions, and systems of
quantum fields with Yukawa coupling (Maxwell-Dirac, Klein-Gordon-Dirac,
Klein-Gordon-Schrodinger, e.t.c.). In fact, most of these equations have
no nontrivial solutions with the asymptotic form of the free solutions.
In this talk, I present a new framework for the nonlinear scattering in
the case where the degree of nonlinearities 1s not high enough to ensure
asymptotically free solutions. The results given here, together with the
recent papers [1]1[2], give an answer to the third problem of M. Reed.
We consider scattering for the nonlinear Schrodinger equation

18,u + (1/2)8u = £(uw)u. (1)

Here u is a C-valued function of (t,x) € RxR™, A is the Laplacian in rR",
and f 1s an R-valued function on . We treat the following two cases.
(I) The single power interaction in one space dimension:

£(u) = alul?, 1 € R\{0}, (t,x) € RxR. (2)

In this case, (1) is derived from the electromagnetic wave equation for
the propagation of a laser beam in a nonlinear medium, from the Zakharov
system for the propagatioh of the Langumuir waves in a plasma, from the
Davey-Stewartson system for the propagation of surfaces of water waves,
from 1isotropic Heisenberg equation for the evolution of classical spins,
from the Ginsburg-Landau model for superconductivity, and so on.

(I) The Hartree type interaction in more than one space dimension:

1

f(u) = velul?, v(x) = aix1”L, (t,x) € RxR™, n > 2, (3)

where +« denotes the tonvolution in VRn. In this case (1) 1s derived

77



from a multibody Schrodinger equation in the self-consistent field
approximation for a quantum system of bosons interacting through two body
potential V. The associated time-independent version also arises in the
quantum field theory, especially in the Hartree-Fock theory.

The above examples (2)-(3) have the following properties in common.

(a) Gauge invariance: f(eiau) = f(u), 0 € R.

(b) Homogeneity: D(t)_lf(D(t)u) =t leu), t > o,

where D(t) is the dilation operator given by (D(t)y)(x) = t'n/ZW(t'lx).

Property (a) leads to the conservation of the prpbability density which
enables us to establish the well-posedness of the Cauchy problem for (1).
More precisely, in both cases (I)-(I) it 1s proved that there is a unique
group of nonlinear operators {S(t); t € R} such that for any k € Nu{0}

(1) S(t) 1s a homeomorphism in the usual Sobolev space Hk and is an
isometry in the L2 .norm for any t € R.

(2) S(t+s) = S(t)S(s) for any t, s € R, S(0) = 1.

(3) For any ¢ € Hk, the map t +— S(t)¢ 1s continuous from R to Hk.

(4) For any to €R and ¢ € Hk. u(t) = S(t—to)d is a unique solution

satisfying u € C(R; Hk) n n Lzla(q)(k: Wk'q) and

0<8(q)<1 loc
t
u(t) = Ult-ty)s - 1 [ U(t-vf(u(r))ule) de, t € R, (4)
t
0
where U(t) = exp(i(t/2)A) and &(q) = n/2-n/q.

In scattering for (1) a cucial effect is given by the degree of nonlinear
term f(u) at u = 0, which is measured by the decay rate in t of the
dilated potential D(t)‘lf(D(t)u). In the ordinary scattering we compare
solutions u to free solutions U(t)¢t on the basis of the asymptotics

fu(t) - U(t)¢tl2 — 0 as t — to, (5)

We would say that scattering theory for (1) had been possible only in the
case where D(t)—lf(D(t)u) ~ t-Yg(u) as t — o for some function g and
¥ >1. In n space dimensions, this corresponds p > 1+2/n for f(u) =
;\Iulp.1 and y > 1 for f(u) = v-lul2 with V(x) = aIlxI1”Y. On the other
hand J. Ginibre (private communication) proved that (5) is impossible for
any nontrivial solution when D(t)-lf(D(t)u) ~ t_rg(u) as t — o for
some g and ¥y £ 1. Property (b) therefore shows that the usual setting
of scattering just fails for (2)-(3).

In order to state the main results we use the following notations.
wo.P denotes the Sobolev space given by
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WP - (v e P . 1%, < =}, m € NU{O}, p € [1,=].

- 2Itxlsm

o
Here I-Ip denotes the norm in LP = LP(R") and 8% - H?=1 ajj. aj = S/SXJ.

m,S

for a multi-index «. H denotes the weighted Sobolev space given by

H™S = (v e 975 iy o = baeixi®)S/?

0,1

m/2

(1-4) ¢l2 < =}, m, s € R.

For ¢_ € H we define the phase functions St by

ES

s*(t,x) = 7 logltl-£(8,)(t7'x), t € R\{0},

where =~ denotes the Fourier transform given by
¥(E) = (P9 (&) = (202 [ exp(-ix-8)¥(E) as.

We define the unitary operators exp(iSt(t)) by

exp(1S,(t)) = exp(18¥(t,-1t¥)) = 7 lexp(F1logltl-£(8,))7.

Theorem 1. Let f be as in (I) and let k € Nu{o0}. Then there is a
constant g > 0O with the following properties.
(1) For any $, € Hk'zhﬂo’l“2 with |$+'¢ < € there exists a unique
¢ € Hk'o such that for any 0 € (1/2,1)
IS(t)g-exp (1S, (£))U(L)8, 0, o = O(t™ %), 6),
v 4 1/4 -9/2
([ 1scos-exotis, conurs 1t Jar) =062 as £t ve.(m),
t W’
(2) For any ¢_ € 1% 20 K*2  with #4_N_ <& there exists a unique
$ € Hk'o such that for any 6 € (1/2,1)

IS(t)é-exp(1S_(£))U(LI$_L, o = 0(1t17%), (6)_

1/4
) =001t1™%2) as t — = (7)_

t
([" 1stors-expiis_cenucars 1t | ac
—® '

Theorem 2. Let f be as in (I) and let k € Nu{0}. Then there is a
constant g > 0 with the following properties.
k.ZnHO.k*Z

k,2_,0,k+3

(1) Let ¢, € H for n 2 3 and ¢ € H NH for n = 2.
Suppose that there is ¢ € (0,1/(n-1)) such that I$+Ip(a)|3+'p(—a) < g,
where p(x0) 1is given by p(zo) = 2n/((1%0)(n-1)). Then there exists a

unique ¢ € Hk'o such that for any 0 € (1/2,1)
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~

IS(t)9-exp (1S, (£))UCE)$, b o = 0(t™%), (8),

e 4 174 -9/2
(r IS(v)#-exp(iS,(t))U(T)$ | 4 o dt) = 0(t ) as t — +e. (9),
t W’
(2) Let ¢_ € K 20 k2 for n 23 and ¢_ € o 20 K*3  eor g - 2.
Assume that there is o € (0,1/(n-1)) such that 18_1 (a)li_l (-0) < Eg»
k.0 1Y p
then there exists a unique ¢ € H' such that for any 6 € (1/2,1)
IS(t)#-exp(15_(£))U(B)$_k,_, = 0(1t1"%), (8)_
t 4 1/4 -6/2
U IS(t)d-exp(1S_(x))u(vIe_14, _ dt) =001t17%2) as t = —e. (9)_
—® w*e

By Theorems 1-2, the modified wave operators W. is defined as maps

K K,0 K *

¢, — ¢ from B to H , Wwhere B is the domain of Wt given by

+
{y € Hk'ano'k+2; IGlm < g} 1in the case (I), for example. The Cauchy
problem for (1) is solved so that the asymptotic behavior of solutions is
described as (6)t or (8)1 when the initial data are in the ranges gf Wi.
Moreover, we see: (A) wt are injective and isometries in the L norm.
(B) Wi are continuous from Bk to Hk'o, with Bk topologized from
the associated weighted Sobolev space. (C) Under the evolution S(t),
Range(wt) are asymptotically orthogonal to every bound state for (1).

(D) Wt have the intertwining properties: S(t)Wt = WiU(t) on Bonﬂz’o.

Our modified wave operators W:t have some properties analogous to
the modified wave operators of Dollard type for the Coulomb scattering.
First, W:t intertwine the interacting dynamics and the usual free dynamics
as described in (d). Secondly, the modification of the wave operators
has no contribution to the asymptotic behavior of the probability density
both in the position and momentum space. Lastly, the asymptotic motion
of solution of (1) 1is ' closely approximated by the solutions L of

18,w, + (1/2)aw, = f(Gt)(-itv)wt.
In the scattering with long range potentials V, with the interacting
dynamics given by the’ unitary operator exp(-1t(-(1/2)A+V)) we often
associate the modified free evolution given by the solution w of

iatw + (1/2)Aw = V(-1tv)w.

The substitution x by -itv in the potential term is common both to
the linear and nonlinear case. Unfortunately, this is not enough for the
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present nonlinear case and it is our claim that the nonlinear potential
.f(u) must be modified as f(3 )(-1t¥) through the introduction of 6

E A It is a simple matter to see how the standard method breaks down in
(1) ‘and -(I). The.standard theory is carried out by solving the equations

~u(t) =«U(t)¢t + 1 I: U(t-t)f(u(zc))u(c) dx - (10)

- . t . .
for given 6 If the procedure is to work; the integral in (10) should
converge in L But this is impossible since every nontrivial solution

.of (1) does not decay faster than the free solutions and the integrand
decays 1like 0(I1t1™1
. Coulomb scattering, where Cook's integral diverges logarithmically.

) at best. The very same situation happens in the

Our method depends on solving another integral equations around
modified free evolutions v, instead of U(t)¢t in order that the
Hequations could have convergent integrals. Rather than (10), we consider

u(t) = v (t) ¢ 1 f: U(t-T) (£(ulr))ule) - (18 +(1/2)8)v () dr  (11)

far suitable.»v:t which giye 5 nice cancellation of the divergent part of

f(u)ut' To this end we introduce the following approximate solutions V-

v (t) = exp(1sE(eNUOM(-t)g, = 1T Zexp(1ST(LHIM(ID(EIS,.  (12)
wﬁere M(t) = exp(ilxl2/2t). vy turn out to satisfy (1) up to the rate
O(Iti—z(logltl)z) in L2 as t — zo, because of the exact cancellation
'of'the divergent terms f(vt)vt and |tl_1f($t)(t_1x)vi from 1atv1.
Then, (11) are solvable near t = %= by a contraction argument on the
”space defined as a closed ball centered at V- The space-time estimates
of Striéhartz type are essential in this step. The solution u, defined
for large times, behaves like vt(t) as t — %o, and extends to all
times - by means of S(t), and then ¢ in the theorems is given by
~u(0) = @. The rest of the statements of the theorems follow by proving
: ji(t)'~ exp(ist(t))U(tMt as t —» z». Detalls will be given elsewhere.
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Shape Optimization for Periodic Solutions
to Multi-Phase Stefan Problems

Atsushi KADOYA

Department of Mathematics
Graduate School of Science and Technology
Chiba University

1.Formulation of an Optimization Problem
Let us consider periodic solutions for a multi-phase Stefan problem described as follows:

w—-AB(w)=f inQ(@):=Rx0,
SP(Q) { Bu)=g ol; E(ﬂ)) = R>><< o0,

where § is a fixed ‘bounded domain in RN(N > > 2) with smooth boundary af}; N is a smooth
subdomain of ; @ := R x { and $£:= Rx 90, B: R— R is a non-decreasing function on
R such that

(1.1) B(0) =0, |8(r)| = Colr| — Cq forallr€ R,
' 18(r) = B(r")| £ Lo|r — r'| forallr,v € R,

where Cp > 0, Cy 2 0, Lo > 0 are constants Let Tbea glven posxtlve constant. Here we
suppose that f € L} (R L3(8)) and g € W22(R; L*(®)) N L2,.(R; H*({)) is given T-penodlc
functions.

We use the following function spaces and notations:
(1) We define a bilinear form aq(-,-) on H'(f2) by

aq(u,v) = /nVu -Vudz for u,v € H'(Q).

We denote by (-,-)q the duality pairing between H~!(R2) and H}(R), and by Fq the duality
mapping from Hj(Q2) onto H~() which is given by the formula

(Fav, z) = ag(v,z) for all v,z € H}(R)

Moreover, (-,-)q denotes the inner product in L*(22).
(2) We denote by O := { 2 C Q;Q is a smooth subdomain of Q } and by V() the set

{z € H)(§);z=0 ae. on{l—Q} for each 2 € O.

Clearly, V() is a closed linear subspace of H}({2). This space is a Hilbert space with inner
product a(-,-) := ag(-, ) and with norm

|vlg = a(v, v)**(= Vol @) forve vV(Q).
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(3) Now, we introduce a notion of convergence of closed convex sets in a Banach space
Y, which is due to Mosco [7]. Let {K,} be a sequence of closed convex sets in Y, and K
be a closed convex set in Y. Then we mean by “K,, » K in Y as n — oo (in the sense of
Mosco)” that the following two conditions (M1) and (M2) are satisfied:

(M1) If {ny} is a subsequence of {n}, z € K,,, and 2z — z weakly in Y as k — oo,

then z € K.
(M2) For any z € K there is a sequence {z,} C Y such that
Zn € Kayn=12,...,and z, + zin Y as n — oo.

(4) We denote by xq the characteristic function of {2 on € for any subset  of ).

Our shape optimization problem is considered for any non-empty subset O, of O which
is compact in the following sense:

such that xq,, — xa in L}({) as k — oo and V(,,) — V(R) in H}({2)

For any sequence {Q,} C O, there are a subsequence {Q,,} of {Q,} and Q € O,
(C)
as k — oo (in the sense of Mosco).

EXAMPLE 1.1. (cf. [4]) (1) Let © be the class of all C*-diffeomorphisms from Q
ontoitself. Now, let Q' be a subdomain of § with smooth boundary 3’ and ¥ c . For a
given non-empty compact subset O, of ©, put O, = {6(');6 € ©.}. Then this O, is compact
in the sense of (C).

(2) Let © := {z;|z| < 2} C R?, Q, := {2;6 < |z| < 1} forany 0 < a < } and
Q:= {z;|z| < 1}. Put O.:={2;0 < a< 3}U{Q}. Then, we see that this subset O, of
O satisfies compactness. o

Now, we give the weak formulation of SP(Q).

DEFINITION 1.1. Denote by I a compact interval [tp,?;]in R. A function u: I —
L%(Q) is called a weak solution of SP(2) on I, if the following two conditions are satisfied:
(wl) u € Cu(I; L2(Q)), B(u) ~ g € L*(I; H3(Q));
(w2) — / undzdt + / aq(B(u),n)dt = / [ndzdt + / u(to, 2)n(to, z)dz
IxQ 1 Ix
for all n € W(I,Q).
where C,,(I; L*(2)) is the space of all weakly continuous functions from I to L*(f?) and

W(I,9) := {n € H'((to,t1) x R);n =0 on (t,t1) x 3Q,n(t1,-) =0 on N}.

DEFINITION 1.2. | For a general interval J in R, a function u: J — L*(R) is called
a weak solution of SP(Q) on J if u is a weak solution of SP(2) on I for every compact

subinterval I of J in the above sense. In particular, if J = R, we call that u is a weak
solution of SP(Q).

For any t € R and Q € O, let {¢}} be a family of proper lower-semicontinuous functions
on H~1(Q) which is defined as follows:

ey [ AN~ (o), 90 for 2 € LX),
(1.2) #a(?) { / for z € HY(Q\L*(R),
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where 3 is the primitive of 2 with B(0) =0, i.e.
(1.3) B(r) = /o, B(s)ds for any r € R.

Then, concerning the subdifferential dp§, in H=1(R2) it is easy to see that dy}, is single-valued
in H71(9) and

994 (2) = Fa(B(z) — g(¢))

(14) for any z € D(d¢h) = {z € LXQ); A(z) - o(¢) € H(Q)}.

For any interval I of R, a weak solution u of SP(2) on I is obtained as a solution of the
following evolution problem in H~!(Q):

(1.5) «(t) + Fa(B(u(t)) = g(t)) = f(t) + Ag(t) for ae. t € I.

According to {2; Theorem 2.4], we see that problem SP(f2) has a T-periodic solution u that
B(u) is uniquely determined by .

Now, we consider a shape optimization problem. For a given non-empty subset O, of
O, our optimization problem, denoted by P(O.), is formulated as follows:

P(0.) Q. €0,;J() = nlél‘gc J(Q),
where

T T
(1) I@) = [ 18un®) = ot + 3 [ 160 agopdt xR €0,

uq is a T-periodic weak solution of SP(f2), and §; is a given T-periodic functionin L3 (R; L?({}))
with period T'.
The main results are stated in the following theorems.

THEOREM 1.1. Let{2,} CO andQ €0 such that V(Q,) — V(Q) in H}() as
n — oo (in the sense of Mosco) and xq, — xq in L}(Q) as n — co. Also, denote by u, and
u T-periodic weak solutions of SP(S2,) and SP(R), respectively. Then, as n — oo,

(1.7) (un(t), 2)a, — (ult),2)a  for any z € L*(f}), t€ R
and

(1.8) Blun) — B(u) in L2 (B; I3(S})),

where

2 _ [ Blua) inQ(@)
B(uar) = { g in Q- Q(Y) forany N €0.

THEOREM 1.2. Problem P(O.) has at least one solution ..
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2.Uniform Estimates for SP(Q)

In this section, we prove the uniform estimates for T-periodic weak solutions of SP()
with respect to §2 € O.

LEMMA 2.1 There erists a positive constant My > 0 such that

(2.1) sup jua(t)|zr @) < M1, sup|B(ua)lLrgesriay < M
tER t€ER

for all Q € O, where ug is a T-periodic weak solution of SP(R).
Proof. Multiply (1.5) by u(7) in H~!(22) to obtain

%Z{%—'lu(T Wet-1@) = (@(7), w()g-1@) = (£(1) — 3 (u(r)), (7)) -1 ()-

According to [3],

(2.2) { a2lzldaqy + b1 2 ¢h(2) 2 ailzflaqy — b1 forany z € L*() and t € R,
' kglzlp(n) > IZIH-l(Q) forall z € Lz(ﬂ)

where a;, a3, by, k; is positive constants independent of Q € O.
By (2.2), we have

(3 (w()), u(T)) -1 (a) 2 Pa(u(T)) = ar|u(7)L(q) — b
2 alkg'glu('r)lﬂ-xm) - bl.

Then, we obtain
d 2 -2 2 k3 2
;;lu(f)hr-!(n) + a1k3*|u(7)[fr-1a) < 261 + 2_01|f(7')|x—l(n)-
After some calculations, we get that
s‘gglug)Tln-'m) <M, fggluluunr;m(n» <M,
sup [ leh(u(r))ldr < M;.
terJt
Multiply (1.5) by «/(7) in H~1(Q2) to obtain
(Bea(u(r), ' (r)a-1a) = (f(r) — ¥(r), ¥ (7)) a-10)-

According to {3], we have

(2.3)

%«’B(U(T)) — (394 (u()), ¥ (7)) r-1(2) < 19'(7)| 2@ (@200 (u(7)) + b1).
Then, we have
d 1
7 = )en(ur)} + 5(r = )W’ (Nl-1ay
< aalg'(7)lLaa) (T — 8)ea(u(7)) + bi(r — 8)lg'(7)] 22y
4307 = (W amrny + $a(UT)):
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After some calculations, we get

(= leh(u®)] + 3 [~ il
(2.4) <{h@—ﬂ/w%ﬂwmh+ G—O/Iﬂﬂhmmh
+ [ lenutr)ldr} exp(w t) - W(s))

where ¢t > s and ”
W(r) = a, / 19'(0) | acaydo.
By (2.3) and (2.4), we derive (2.1). o

LEMMA 2.2 There exists a positive constant My > 0 such that

(2.5) supl ﬂ(un)lm(,,.n seaa)) S My, sup |8(ua(t)|miay < M,

for all 2 € O, where uq is @ T-periodic weak solution of SP(Q).
Proof. As was seen in [3], problem SP(Q) is able to be approximated by non-degenerate
problem SP(Q)%, ¢ € (0, 1]:

w— DB = inQ@),
SP@) {ﬁ‘(u)=g on E(®),

where §*(r) = f(r) + er, for r € R.
In fact, this problem has a unique T-periodic weak solution u* € Ci..(R; L2(£2)) such that
—ﬁ‘(u‘) € L} .(R; I*(Q)) and *(u*) € L{,(R; H'(R2)), and besides u* — ugq in C, loc(R;

LQ(Q)) and f°(u) — B(uq) weakly in L? (R; H(R)), as ¢ — 0. There exists a positive
constant C’ independent of ¢ and Q such that

t+T
(26) sup ' (i) +sup [ V(B () Exmyr < '
tER

In fact, (2.6) is obtained in a similar way to the proof of Lemma 2.1. Moreover, multiply both

sides of u; — A(8*(u*) — g) = f + Ag by — (ﬂ‘(u ) — g) and integrate over (s,t) x Q (s<t).
Then, by (2.6), we have

d
e 1! e )
2.7) fgglﬂ‘(u O)lmr@) < €, fggl—dtﬂ‘(u ML e,000)) < C,
for any € € (0,1] and Q € O,

where C" is a constant independent of ¢ € (0,1] and 2 € O. Therefore, letting ¢ — 0, we
see that (2.5) holds. o
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3.Proofs of Theorems 1.1 and 1.2 L
Proof of Theorem 1.1. Let I;:=[t,t + T}, Q(Q)¢:= I; x @ and Q, := I, x {1 for all

t€R. Put
v { B(un) in Qn = Q(Rn),
"l in Q - Q..
Consider a function u, € L*(R; L*({2)) such that g(t,z) = B(u,(t,z)) on Q. Here, we put
~ __ ) Un in Qy,
U = { u, in Q—Qn.

Then, we see that %, € L*(R; L’(Q)) By Lemmas 2.1 and 2.2, there exist a subsequence
{ns} of {n} and & € L=(R; L*({2)) such that

(3.1) fi,, — 1 weakly* in L°(R; L*({2)).

Moreover, for any ¢ € R

Up, — U weakly in W12(I; H~'(Q)) and weakly in L3(1y; L*(f2)),
(3.2) Up, U weakly in L?(Iy; H(Q)),
vn,(t) = v(t) weakly in H'({),

By Ascoli-Arzela’s theorem, we see that
va, — v in C(I; L*(§)) and L3(Iy; L*(9D)).

By the periodicity of @i, i is also a T-periodic function. Since v,, = f(ts,) in @, (3.1) and
(3.2), we see that v = (&) and that A(ii(t)) — g(t) € V(Q) for any t € R.

Next, let z be any function in V() and p be any function in D(J;). By the assumption,
there exists a sequence {2,} such that z, € V(R,) and z, — zin H'(Q). Then, by z,, =0
a.e. on {1 - Q,,, we obtain

t+T ¢+T ¢t+T
~ [ @) 2 T+ [ om0, m el = [ (1), 2melr )
Since z =0 on 2 — Q, we see
t+T t+T t+T
- [ @) 2ap()dr+ [ aa(ulr), e(r)dr = [ (£(r), aslrdr,

as k — 0o0. This shows that u = #i|gq) is a periodic solution of SP(?). Then we obtain
(1.8). ¢ :

Proof of Theorem 1.2. Choose a sequence {{2,} in O, such that
J(9,) — J. := inf{J(Q); 2 € O.}.
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Then, by assumption, we may assume that V(£2,) — V() in H}(£) (in the sense of Mosco)
for some 2, € O, and xq, — Xa. in L!'(Q2) as n — co. Now, denote by u, a T-periodic weak
solution of SP(2,) and by u, a T-periodic weak solution of SP(2,). Then put

and

Y { Blx) in Qu=Q(),
* g in Q - Qm

Ve { Blw) inQ@=Q(@.)
¢ @Q-@Q

From Theorem 1.1, it follows that v, — v in L? _(R; L*(f})) and hence

J(Q,) — J(A.).

Therefore J(2,) = J. and 2, is a solution of P(O.) . ¢
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Existence Theorems for Quasilinear Elliptic Problems on R
By
Yoshitsugu Kabeya

Graduate School of Science and Technology
Kobe University

§1. Introduction

In this paper we consider the following quasilinear elliptic problem :
(1) —div(|VufP~2Vu) + Ajuff ~2u = ¢(z)|u|« on R®

where p and o are constants which satisfy certain conditions stated later, and A is
a positive constant. We seek a nontrivial solution of (1) as a critical point of the
functional

1 1
@ = [ v - 5 [ @l
in the Banach space W1 ?(R™).
From the homogeniety of the first term of ®,(u), under appropriate assump-
tions on the potential ¢(z), we can get a nontrivial solution of (1) by solving the
constrained minimization problem:

: _ a+2d
uewl.l(glf)‘"u")‘=l ( /!;'n q(z)lul z)

where |||l = {fR..(IVuI"+/\|u|P)dz}1/p. Unlike the case p = 2, it seems that few
papers have treated the case of p-Laplace equations with a potential g(z) which
may change its sign. ‘

For the sake of simplicity, we consider only the radial csae. But we can
get similar result in the non-radial case (see Kabeya [3]). We don’t mention the
regularity of solutions of our problem here, however, there are several results in
the regularity of p—Laplace equations including DiBenedetto [1] and Uhlenbeck
[7).

For the case p = 2, many authors including Ding and Ni [2] and Rother {4], [5]
considered equations of this type. The former authors studied the case of positive
potentials and the latter potentials which may change its sign. In both papers,
they used ” & la uniform integrability” so that the treatment of the problem on
R" could be similar to that in a bounded domain. Following the idea of them, we
consider a more general case, i.e. the case of p-Laplace equations (1).
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§2. The radial case

In this section we will study the radial case,i.e., the cae when the potential
q(z) in (1) is a function of the variable r = |=|.
We define
Cor ={ue€CPCR) | uis radial}.

and denote by Wl? the completion of G With respect to the norm W'?., We
also denote the area of 8B;(0) by w,. We use the same letter C' for expressing
various constants in this section.

We can now prove the following radial lemma which helps us to weaken the
assumptions on gq.

Lemma 1 (the radial lemma). Foru e Wh? and1<p< n, if 2 # 0, then
[u(2)P < ClafP~||ulf}.

Remark. For the case p = 2, the radial lemma will be found in Struwe(g).
Proof. 1t suffices to show the lemma for u € Cg5. For such u, we have

[u(2)]P = - / T dir{lu(r)l’}dr.

|=

The right-hand side is estimated as follows:
> d i 5 d
= P < -1 ¢ y
[ &P <5 [, 1 e
Now we decompose the last integrand in such a way that identity
lu(r)lp—lliu(,-)] = r-(ﬂ—l)(n+1—p)/n{|u(,.),,.(n-1)/p‘ }P‘1|iu(,.)|,.(n—l)/p
dr dr

holds. The total sum of the exponents of » is equal to 0. In fact,

_(n-1)(n+1-p) L (=P -1)p-1) Nt
n pn p

o (PO 1=9) 4 (0= o ) 4 221
_~nr-1)+n(n-1)
=1

=0,
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We will estimate the integral using the Holder inequality. First we observe that the
Holder inequality can be applied, because we can raise the power of the decomposed .
parts to a, B, 7, respectively, where a = n/(p—1), B =p*/(p— 1), 7=p, since

1+1+1=p—1+(n—p)(p—1)+1
a p 7 =n pn P
_pp=D+n—-p)p-Y+n _
pn

Hence
* d i d
[ g topyan <o [P gratelen

<p( P =11/ (-1) dr)("""'
Jsl

b nl(nep) n— (n—p)(p—1)/pn d 1/p
< ( /M fu(r) P! P51 ( / |y iar)

=1

If we observe

/ % (= 1)n+1-2)/ (-1 gy
o

o (n—1)(n+1-p) 1-(n-1)(n+1-p)/(p=1)
o {1 B p—1 } [ ]
zl-n(n-r)/(p-l)’

=l

n(ﬂ-p)|
we get
|.,(,)|»<p{m}<»-wn wy (XD, P g = 2 |Vl s
L= - \-1)/n, —(n—p)(p—l)lxm —llp p—n .
3 - p)} lelp= (llulloe + IVullzs )’

< ClzPP~"||Vull}, (by the Sobolev embedding theorem)
< ClzlP~llull,

where C is a constant independent of u € Cg5,, but depending on p and n.
The proof is complete.

We are now in a position to state our main theorem. We assume that ¢(z) is
a radially symmetric function which is allowed to satisfy some growth condition
at infinity.

Theorem 2. Let 1 <p<n,and p* —2 < 0. We assumeq:R"” - R is
measurable, radially symmetric, and satisfies the following assumptions:

(A4) q=q+—4q-, 9- € L,
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(45) 0 < g4(lz) < f(l=])l=*

where f € L and k(o) = *2{(c +2) — p*} — 6, where § is a positive constant.

Furthermore
(A 6) 0 < f(l=}) £ Cl2* on B,(0)

where 1 > 0 is a small constant.

Aan There exists ug € W7 such that / gluo|°*2dz > 0
Rn

Then for all positive ), there exists a nontrivial weak solution u of (1) in W}?.

Remark. Theorem 2 is valid for all § > 0, not only for a suitable §. But,

according to § in (A 5), f(|z|) must vanish at the origin as stated in (A 6). Proof.

define D, = {u € W}? | [on q-|ul"*?dz < oo, [lullx=1}.
Then, by the radial lemma, we have

o0
/ q+|u|"+2dz =wn/ q+|u]a+2r"'ldr
R» 0

"
scwn(/ q+"u";+2r(}'—n)(c+2)/x’+n-1dr
0

s /oo “ "u":n,(p-u)(ufz)/nn—1 dr).
n

We take u in W!'? and, from Assumptions (A 5) and (A 6), we get

] )
/ g+|u|"*%dz < Cw,.{/ rédy +/ r"dr},
R" 0 n

where

n

p=26+2"2f(s4+9) - }-5—?(”2)”-1,

p n—p

V= o+2)- -6- c+2)+n—-1.

n

Then these values yield y =8 — 1, v = —§ — 1. Hence, finally, we have

, 1 1 _s100
[, avlul ¥z <Con{ (55715 + e [ - 317}

(5) .
=Cunz {1’ +Iflls=n~}.
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This value is independent of u € D,. Let {u;} be a minimizing sequence for Sy in
D,. By the Assumption (A 7) we have

—00 < S) < I(ug) < 0.

Since {u;} is a minimizing sequence for Sx\(< 0), we may further assume
I(u;) < 0. From the fact that

[ aslultraa<c

and
Sx < —/ g4 luj|"t2dz +/ g-lu;|"*?dz <0,
R" R"

we get

/ g-lu;|°t2dz < C .

R'l

So we have [paq- |u;]°+2dz < C for all j. Moreover, we may assume
u; — v weakly in W?, and u; — v a.e. in R".

Then we have
"v"A < llII'_ 1 inf "ui "»\ <1
Jj—+00

and
/ g-lv|°*?dz < lim inf/ g-|u;|°*%dz < C.
R" J—+0o0 R

By the fact that |ju;|]x = 1 and the above estimate (5), for every € > 0 there
exist positive R, and r, such that

/ g+ul’t?dz < ¢, / g+lul’t?dz < ¢
|12 R lol<re

for u € D,.

We now set T, = {z € R” | r, < |z| < R, } and apply the Lebesgue dominant
convergence theorem (from Lemma 1 and (A 5) , we can take a summable dominant
function; see the above estimate on g4 |u|?*?) to obtain

[ arlusltds — [ qyloirdz asj oo
T. T,

Since

10 [ ot [ qupuiraa,
Rn T.
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we get in view of the above estimates,
1) == [ (@ =a-)lol" e

= [ a-liide = [ guoletiae
R" . Rr

< [ a-bl*de - [ asbolr+iae
n”

e

<timint([ g-lugl"*dz — [ gylug|”+2da)
R" T,

J—+o0

<tmint([ q_lul*dz — [ qulugle2dz + 20
R» R

j—oo

=S5, + 2¢.

So we have

I(v) < liminf(I(u;) + 2€) = S, + 2¢.
j—oo
Hence, we obtain I(v) < . Finally we must show v € D, We set a = ||v]|», then
a€(0,1) and lve D, Thus

S < 1(511) = aH](y) < a~(e+D)5, < g

Since Sy <0, we get @ = 1. Hence v € Dyand I(v) = Sx. We note that |g][v]°+!
is locally integrable. This is because

/B lgllo]"* dz = /B lgfH/ +Dgle 4D/ (o4 o414,

1/(e+2) (e+1)/(a+2)
<( [ 1) ( [ lalll**) < +oo
B B

holds for all bounded domains B C R" in view of the Holder inequality. By the
Gateaux derivative at v in Dr’ we have

/ {|Vu|”'2Vu-V(p-}-/\lul"“’ugp}dz=IS,\|'1/ qlu|® updz
R» R»

for every ¢ € C§°(R").
Thus in view of the Lagrange multiplier rule(see Struwe (6]), we find that
u = |Sx|"/(e=P+2)y is a nontrivial weak solution of (1).
The proof is complete.
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ON EXACT SOLUTION OF SOME
QUASILINEAR HYPERBOLIC EQUATION

AKD ER (ZEAXE BFE)

AN XS S HMERECOWTSL 5.

u, ~ fau = gx, t,uw), x € R™ t > o0,
w®) '

W0 = uyGd, u X0 =u G0, x € R™

mu, z=]| _Iwlix_ 1@ 207 1@ eclo.o .
glx, v, w) ik, 5—5.61’!.&”!&1‘6. g(x.t,0)=0 THhIX “Kirchhoff quasi-
linear hyperbolic equation™ IR 3HEXTCHNAFRE. UMARNGRE
EoWTE L OMRHBT IR TWE, (c.1. (1]-(16])
STl f=vE g(x.t.a)=?k LT 1 XROBELEOVNTE 2 5.
FITITERAMET S,
G, t) = voetd ELT(P) ERATHE

- 1/2 2 2
: 2 ¢ 133
v(x)ott(t) - (‘[ va(x)l dx ) leCtd | vxx(x) = v (x)e

—

P uix,0 = e(@vGd = QOV(X)

ut(x.O) = ot((?)v(x) = 'lv(x)

eCt) 2 O LEETHRUE (0) XV

2
lvxx(x) + v (x)= 'tt(t) -

v G0 e2)

Iv col%ax THY ABENRMLTS.
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XX
)

32 =j va(x)lzdx < +e

—- 2
(’tt(t) = 20°Ct) .. ... (2)

OKrX) v = Pgs @0 = ®,

eC(t) =2 0

FIT2Y (%) ROVTHLL, 40 6P L BRNET Lin voO =0 4 p
=
IR EMRT 2 DL RDXx 20 RRIFEMEMER S,

By GO = av0O = = vEO  eeeeia.... (1)
XX

N v (0 =0, lim vGoO =0,

XHre
2 ®
%=] Iv (x)lzdx<+.
0 x

(1) R2v (x) 2HFTOSSExLTTRYT 2L

Bvi(x) = avix) - %— Voo + —g— v3 - v

ZIT v =2 pgnig

SEV = S V20 - med oo (3)
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vOOV A = (2/3)vx) /8
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_. _3 ‘ __ sinh px | 2
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2 cosh2ux
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—3 A Bsinh ux
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x coshsux
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o 2
2, - _6 ,2 . 3 y
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Asymptotic stability for heat equations
with hysteresis in source term.

Tetsuya KovyaMa

§0. Introduction.

This work is concerned with the initial-boundary value problem of heat equation which
source term has nonlinear memory of hysteresis type:

%u(z,t) — Au(z,t) + w(z,t) =0 in Q,
(IBV P) u(z,t) = g(z) in Lo,

u(z,0) = u(z) in R,

w(z,t) = H(u(z,-); wo(z))(t) in Q.

Here 2 is a bounded domain in R¥ (N > 1) with smooth boundary I', @ := 9 x (0, c0),
Ty is a subset of T' with positive surface measure and Xy := I'g x (0,00). g is boundary
value, and uo and wy are initial values for u and w respectively.

w is a controle term with memory of hysteresis type, that is, w(z,t) is determined
depending on {u(z, 8)}oc.<¢ and wo(z). This dependence is irrustrated as follows.

| fa

There are two functions f, and f; which are monotone nondecreasing, Lipschitz con-
tinuous and f,(€) < fi(€) for all £ € R. For each “input” function £ € C([0,0)) and
“%nitial output” wy € R with consistency condition f,(£(0)) < wo < f4(£(0)), “output”
w(t) := H(&; wo)(t) is determined by the following rules:

w(0) = wp,

fa(€(t)) S w(t) < fa(€(t)) forallt >0,

w(t) can increase (or decrease) only when

w(t) = fa(£(2)) (or w(t) = fa(£(t)) respectively).

113



Such operator H is called (Lipschitz) hysteron, and systematically studied in [K-P].

Existence and uniqueness of a solution of (IBV P) is obtained in [K-K] and [K-K-V].
The aim of this note is to prove that the solutions u(z,t) and w(z,¢) of (P) converge when
t — oo in L*(Q).

§1. Statement of a result.

We begin with the construction of hysteron opera,tor"}i. Let f, and f; be functions
on R with the property

) fa and fq4 are Lipschitz continuous with Lipshitz constant
less than L > 0, nondecreasing and f,(§) < fa(€) for all £ € R.

Put
D(H) = {(& w) € C([0,00)) x R; fa(£(0)) < wo < fa(€(0))}

and define operator H; D(H) — C([0, 00)) as follows. Firstly when (§,w) € D(H) and £ is
piecewise linear, that is,

there are points 0 = ¢y < ¢} < t3 < --- such that lim, o t, = 00
and £ is linear on each interval [t;_,¢,], 1= 1,2, -,

define

w ift=0,

H(E, w)(¢) := | min{fu(§()), max{fa(£(¢)), H(E, w)(ti-1)}}
if te(tjont) i=12-.

for each ¢t > 0. Then for any pair (&, w;) and (&, w;) € D(H) with piecewise linear s,
the estimate

maxq, q(H(1, w)(t) — H(E, wa)(¢))
. ma'x[a,t](fa(fl) - fo(E2))a
(1.1) < max § maxq,(fa(é1) — fa(£2)),
H(&l) w,)(s) - H(f?; w?)(s)
forallsandt with0<s <t

holds (for this, see [K-K]), and this leads to Lipschitz continuity of X

(1.2) 11 (&1, wo) = H(&, wo)llegorp < Llés = Ellogory

for all T > 0 when §; and &, are piecewise linear. Because the space of all piecewise linear
continuous functions is dense in C([0, 00)) with compact convergence topology, the opera-
- tor H is extended uniquely to the operator on whole D(?), and estimates (1.1) and (1.2)
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again hold.

Let up and wy satisfy the conditions

(1.3) ug € WH(Q), ug=gon Ty,
(1.4) wo € L*(9),
(1.5) fa(uo(2)) < wo(2) < fe(wo(z)), forae ze€f.

Put for each T > 0,

X(T) := L2 C([0, T]),
Xo(T) := {u € X(T); u(z,0) = uo(z) forae z€ a},

and define operator
G; Xo(T) — X(T)

by
(1.6) G(u)(2, 1) := H(u(z,); wo(2))(t)-
Then this operator is well defined and the estimate
1G(41) — G(u2)llx(ry < Lllwr — wallx(ry for all T >0 and u;, u3 € Xo(T)

holds.

- Put
H := L*(Q) with norm || - || := || - llzaca),
V = Wi3(Q),
K :={z€V; z=gon I}

and define a functional ¢ on H by

1 N 8z .
<P(Z):= 5/ﬂ§5:dz 1fz€K,
o0 otherwise.

Then the problem (IBV P) is reformulate as the following Cauchy problem in H:

{ u'(t) + Opu(t) + G(u)(t) 20 fort 20,

(CP) u(0) = uo.

Next theorem is a direct consequence of the results in [K-K] and [K-K-V].
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THEOREM 1. Suppose that  C R” is bounded domain with smodth boundary, and
that the assumptions (f), (1.3),(1.4) and (1.5) hold. Let G be an operator defined by (1.6).
Then (CP) has a unique solution

u € Lf5,(0,00; V) N Wk2(0, 00; H).

Our aim is to show the following theorem.

THEOREM 2. Under the same assumptions as in Theorem 1,

(1.8) Uoo 1= ‘lixg u(t)
and |
(1.9) Weo = ‘lirg G(u)(?)

exist and satisfy

(SP) Optios + wo, 3 0.

§2. Proof of Theorem 2.

LEMMA 3. Let £ € AC([0,T]) for some T > 0 and (£,w) € D(H), then H(¢,w) €
AC([0,T]) and

(2.1) |HE WO S Hdew) forae0gisr,
d d
(2.2) = (t)zt-’li(f, w)(t) >0 forae. 0<t<T.

PRooOF. Fix s and ¢ so that 0 < s < ¢ < T, and put

Er)=¢(s) forall0<T<T,
o = H(E, w)(s).

Then (¢, @) € D(H). And by (1.1) and absolute continuity of £, we have

[H(&; w)(2) — H(& w)(s)] = [H(& w)(2) N H(E; o)(t)] < Ll - Elloqea
= Lmaxiog |€() = €(s)] < Lmaxy,g [ I%Idf <tf |§£;|df-

This implies H(§; w) € AC([0,T]) and (2.1).
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To show (2.2), we assume that £ and H(¢; w) are differentiable at t, H(§w)(t) =
fo(w(t)) and €(t) > 0 without loss of generality. Therefore for each sufficiently small
h > 0, we have

HE w)(E+h) 2 fulblt +R) 2 fol€(9) = H(Ew)(E),

and thus ¢ d
(22) Higu)(D) = FH(E W) 20.

o

LEMMA 4. Let u € AC([0,T]; H) for some T > 0, then we have G(u) € AC([0,T}; H)
and

(23) NGOl < LW @) forae. 0<t<T,

(2.4) (G(u)'(t),w'(t)) 20 forae 0<t<T.

This Lemma is a direct consequence of Lemma 3.

ProOF OF THEOREM 2. Because G(u) € W7 (0,00; H), by [B. Theorem 3.7}, u is
right differentiable at each ¢ > 0.
By Poincaré’s Lemma, there exists a number 7 > 0 such that

N 0z
1< 92 1n
7l _Z:lll 3 z‘_ll
for all z € V with z=0o0nT,.
For each s,t,T and h with 0 < s <t LT, and h > 0, we have

1 lhuge + ) - (O
(2.10) = —(u(t + k) — u(t), —(u'(t + h) + G(u)(t + h)) + (¥'(t) + G(u)(t)))
~(u(t + h) — u(t), G(u)(t + h) - G(u)(t))
< —llu(t + k) — u(®)? = (u(t + h) = u(t), G(u)(t + h) = G(u)(¢))

because of u(t+h)—u(t)=0 on Ty,

w'(t + h) + G(u)(t + h) = Au(t + h)

u(t) + G(u)(t) = Au(t).
By integrating (2.10) we have

Lt + B) = I = g5llle + ) = P
(211) < =% [t + )~ u(r)iPdr

— L [l + 0 - ur), G)(r + B) = G
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Integrating (2.3) gives

o)+ B) - G < L [ Il
and (2.10) gives
Zlhute + B) = (@)l < IG()E+ ) - GO
Thus we have
1 1 t+h
it + ) = u(@)l| = Fllule +B) —w( <L [ /() I,
and, by letting h | 0 we have

1(3) won-1(%) wom < [ iwoer

a\* 1 1
Theretore | (5) 4Ol (1147 6o s0d (HIGE-+ B) = Gu)( s hve
a common bound on [s,T]. By Lebesgue’s dominated convergence theorem for Bochner
integrals, letting A | 0 in (2.11) gives

1(5) s -1 () s < =2 1(2) soPar - ‘o) o

By (2.4) and Gronwall’s lemma, we have
d\* d\*
= ==y [ =
() wonseen(g) wo
+

Therefore || Edt-) u(t)|| € L'(s,00) and thus (1.8) exists. Similarly by (2.3), (1.9) also
exists. Because lim,_,o, u'(t) = 0, letting t — oo in (CP) gives (SP). O

References

[B] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans
les espaces de Hilbert, Math. Studies 5, North-Holland, Amsterdam, 1973.

[K-K] N. Kenmochi and T. Koyama, Nonlinear functional variational inequalities gov-
erned by time-dependent subdifferentials, to appear in Nonlinear Anal.

[K-K-V] N. Kenmochi, T. Koyama and A. Visintin, On a class of variational inequal-
ties with memory terms, preprint.

[K-P] M. A. Krasnoselskil and a. v. Pokrovskii, Systems with hysteresis (Russian),
Nauka, Moskow, 1983. English translation: Springer, Berlin, 1989.

118



Existence of periodic solutions to a multi-phase
Stefan problem

Junichi SHINODA

Department of Mathematics,
Graduate School of Science and Technology,
Chiba University, Chiba, 260 JAPAN

0. Introduction

Let T be a given positive constant, say period. In this note, we consider the T-periodic

solutions of the following problem

ug— AB(u) =0 nQ=1Ix9,
(P) { Q@Z;‘L)Jrg(t,z,ﬂ(u)):o onL=1xT.

Here I is an interval, §? is a bounded domain in RY with smooth boundary T, and
g has T-periodicity in time t. If the nonlinear flux g is monotone nondecreasing with
respect to the third argument, it was obtained in Aiki et al[1] that the periodic solutions
are constructed as the limit of u(nT + -), where u is a solution of (P) on [0,00) with
the specific initial value, that O7 := {8(w); w is a T-periodic solution of (P) on R} is a
totally ordered set with respect to the usual order of functions on RxQ, that {8v/dn;v €
Or} is a singleton, and that B(w) is uniquely determined by the quantity [, w(0, z)d=.
In this case the comparison result, which is proved by means of the monotonicity of
B and g, plays an important role in the construction of periodic solutions. But if g is
nonmonotone, this result does not hold. So we shall show later the existence of periodic
solutions of (P) through a fixed point theorem. And also we will give an example such
that Or is not totally ordered. For the results to the other types of boundary conditions,

see Damlamian-Kenmochi [2] and Haraux-Kenmochi [4].

1. Assumptions and definitions

Throughout this paper, we make following assumptions.

B : R — R is a nondecreasing Lipschitz continuous function such that #(0) = 0 and
lllrlln_}gf B(r)/r > 0. And a function g = g(¢, z,£) : R xI' x R — R satisfies the following

five conditions:

(g1) ¢(t,,-) is nondecreasing with respect to £ for a.e. (,2) ER x T}
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(82) g(‘v'vﬁ) € L?oc(R; LZ(F)) for any E €R,;
(g3) for each M > 0 there is a constant C,(M) > 0 such that

Ig(t,z,f)—g(t,z,ﬁ')l SCE(M)K-E,' (1)
for any £,¢' € [-M, M] and ae. (t,2) €R x T
(g4) there exist two constants M; and M, with M; < M, such that

9(t,z, B(M1)) <0, g(t,2,8(M2)) 20 for ae(t,z) ER xT; (2)

(85) 9(t +T,2,8) = g(t,2,£) for any £ € R and a.e. (t,z) ER x T.
Now we state definitions of solutions to problem (P). For the sake of simplicity, we

set H = L) and V = HY(Q).

Definition 1. Let I be a compact interval of the form [to,t;]. Then u: I — H is
said to be a weak solution of (P) on I when the following two conditions are fulfilled.

(wl) u € L=(Q) N Cyu(I; H), B(u) € LX(I;V);

(w2) for any ¢ € Wo = {p € H(Q); ¥(0,-) = ¢(T,-) = 0 a.e. in 1},

—/ ugdzdl +/ VA(u)Vedzdt + / g(-,-, B(u))pdl'dt = 0. 3)
Q . Q T
If the interval I is of the form [to, o) or R, then u is called a weak solution of (P) on

I when, for any compact interval I' contained in 7, u is a weak solution of (P) on I'.

Definition 2. Let I be the interval of the form [to,#] or [to,0). Then we call
u: I — H a solution to the Cauchy problem CP(uo) on I if u is a weak solution of (P)
on I which verifies the initial condition u(tg) = ug.

Next we mention the definition of T-periodic weak solutions.

Definition 3. Let u: R — H. Then u is called a T-periodic weak solution of (P)
on R provided that u is a weak solution of (P) on R and satisfies the periodic condition
u(t+T)=u(t) forallt € R.

2. A result and its proof

First we state our result.
Theorem. There exists at least one T-periodic weak solution of (P) on R..

Before proving the theorem, we quote a result for the Cauchy problem CP(ug).
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Proposition (cf.[4,5,6]). Let to be a real number and uo a function in L®(0).
furthermore, let be Hl and Hz constants such that 171 < M;, sz > M; and Efl <

ug < Mg a.e. in Q. Then, there exists a unique weak solution u for CP(ug) such that
ﬁl <u< ﬁz a.e in (4)

Next, for later use, we define a closed convex set K and a mapping P : K — K. That
is, for M} and M; given in (g4), K is defined as

K={z€ HiM, <z< M; ae. in Q}. (5)

And, for each z € K, we assign to P(z) the value at t = T of the unique weak solution
for CP(z).

Remark. By virtue of the proposition, P is well-defined. And K is metrizable with
respect to the induced weak topology of L2(Q) (cf. Dunford-Schwartz [3;p. 434)).

The next lemma is crucial.
Lemma. P is weakly continuous on K.

PROOF OF LEMMA: Let {z,} be a sequence in K such that z, converges to some zg
weakly in L%(Q), and u,, be a weak solution to CP(z,) for n > 1. It is noted here that
the weak solution u,, satisfies the identity

(ul(8),2) + /n VB(un(t))V2dz + /r 9(t, - B(tin(#)))2dT = 0 (6)

for a.e. t € R and for any z € V, where (-,-) is the duality pairing between V' and V.

Then we can make uniform estimates with respect to n, that is,

[ttn|Loo(@) < max{| M}, |Mz]}, (7)
ltn|wr.20,7;v) < C) T(8)
|8(un)lL30,r;v) + 1B(un)lap (@) < C, 9
and
lg(:s -, B(un))lLacz) < C, (10)

where C is a positive constant independent of n. From these estimates, we find a sub-

sequence.{n;} of {n} such that (un,,B(un,),9(:,-, B(tn,))) converges to some element
(u,v,g) in the following sense:

tp, — u weakly in W?(0,T; V') and weakly® in L*(Q), (11)
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B(un,) — v weakly in L2(0,T;V) and in HL.(Q), (12)

and

9(y+, B(t4n,)) = g weakly in L’(z). (13)

By (12) and the uniform boundedness of A(u,, ») on Q, it is derived that ﬂ(u,,,) converges
to v in L(Q). Therefore we have v = B(u) since B is a maximal monotone operator on
L*(Q). :

On the other hand, it is well-known that for any € > 0 there exists a positive constant
C(e) such that

lwlLary < €lVw|y + C(e)|w|g for any w € V. (14)

Substituting B(v.,) — B(u) as w to (14) and integrating over [0,T], it implies that
B(un,) converges to B(u) in L?(X) hence 9(,+, B(un,)) to 9(-,+, B(w)). So, we get g =
g('; °y ﬂ(u))’

It is easily seen that u is a weak solution for CP(uo) on [0, T]. By the uniqueness of

the weak solution, we can assert that

un — u weakly in W3(0, T, V') and weakly® in L=°(Q), (15)
B(un) — B(u) weakly in L2(0,T;V) and in LY(Q), (16)

and
9(++,B(un)) = g(-,-, B(w)) in L?(E). (17)

In particular, P(up) = u,(T) converges to P(uo) = u(T) weakly in H. Thus the lemma
has been proved. J

PROOF OF THEOREM: By the lemma, we can apply Tychonoff’s fixed point theorem.
It ensures that there exists ug € K such that P(up) = ug. Let us denote by u the unique
weak solution for CP(uo) Then, it is easily seen that the T-periodic extension i of u
is a desired one. [

Finally we give an example as was proposed in the introduction.

Example. Let Q= (0,2),

r—1 r>1,
B(r)=<0 0<r<l, (18)
r r<0,
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and g(t, z, £) = €3 — 2€. Then,

z z2>1,

z—1 2z<1 (19)

wi(t,2) = 0 and wy(t,z) = {

are T-periodic solutions of (P) on R , and we have B(wi(t,z)) = 0 and f(ws(t, 2)) =
z — 1. Moreover we easily see that O is no longer a totally ordered set and that

9(-, -, B(w1)) # 9(-,+, B(wz2) on R x T.
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Controllability for retarded system with nonlinear term
in Hilbert space

JIN-MUN JEONC

We consider the problem of control for the followiﬁg retarded functional differential
equation of parabolic type

(1) %tu-(z, t) + A(z, D;)u(z,t) + Ai(z, D, )u(z, t — h)

0
+ /-h a(s)Az(z, D; )u(z,t + s)ds = (Pow(t))(z), z€N, te (0,1,

(2) u(z,t) =0, z €N, te(0,T],
(3) u(z,0) = ¢°(z), u(z,s) = g'(z,s), z € R, s € [-h,0).

Here, Q is a bounded domain in R® with smooth boundary 3R, A(z,D,), A.(z,D,),
t =1, 2, are second order linear differential operators with real coefficients, and A(z, D)
is elliptic in Q. The function a( +) is real valued and Hélder continuous in [—h,0], where A
is some fixed positive number. The controller Py is a bounded linear operator from some
Banach space U to L'(Q); w( - ) is some function with values in U,and ¢°(-), ¢*(-,-)are
given functions defined in £ and Q x [, 0) respectively.

In view of Sobolev’s imbedding theorem we may consider LY(Q) cW-P(Q),if 1 <p <
n/(n —1). Hence we investigate the problem (1)~(3) in the space W~17(Q) choosing p
in this way and considering &, as an operator into W-1(Q). Necessarily we realize the
operators A(z, D;), A,(z,D,), :=1, 2, in the space W-1(Q) by

Aow = —A(z, D), Aw=-A(z,Doju, 1=1,2, for ueWi?(Q)

in the distribution sense. It will be shown that Ao generates an analytic semigroup in
W=12(Q). Thus, the problem (1)~(3) is formulated as

d 0
(4) d—tu(t) =Aou(t) + Ayu(t - h) + /_h a(s)Azu(t + s)ds
4+ Bow(t), t € (0,T],
(5) u(0) =¢°, u(s) =g'(s) 3 € [~h,0),

and the adjoint problem as

0
(6) ditv(t) =Agv(t) + Ajv(t - h) + /_ , 2()iu(t +s)ds,  te(0,T],

(M v(0) =¢°, v(s) = ¢'(s) s € [~1,0),
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where A* : WlP () — W12 (Q),.=0, 1, 2,p = p/(p— 1), are the adjoint operators
of A,,t =0, 1, 2, respectively.

the space W—1?(Q) is (-convex. Furthermore, with the aid of a result by R. T. Seeley
[13] it is easily seen that the inequality

I(—40)* |l w12 (ay) S Ce™l,  —c0 <5 < o0,

holds for some constants C > 0 and vy € (0,7/2). Consequently, in view of the maximal
regularity result by G. Dore and A. Venni [6] the initial value problem

Lu(t) = dou(t) + SB), £ € (0,T)
u(O) =1Uy

has a unique solution u in the class L9(0, T; W3 '*(2)) N W14(0, T; W—1?()) for any ug €
H,, = (Wy?(Q), W 1P(Q))1/q,¢ and f € LI(0,T; W-1P(R)), 1 < g < 0o. Therefore, we
can apply the method of G. Di Blasio, K. Kunisch and E. Sinestrari [5] to the problem (4),
(5) with a more general element f in place of $ow to show the existence and uniqueness
of the solution

u € LA(=h, T; W (@) N WHA(0,T; W=22(Q)) € C([0, T}; Hyq)
for any g = (¢°,9") € Zp,q = Hp 4 X LI(—h,0; Wy *(Q) and f € L0, T; W-12(Q)).
Since we are assuming that a(-) is Holder continuous, the fundamental solution W(t)
of (4), (5) exists [17].

In view of the above result we can define the solution semigroup for the problem (4),
(5) following [5; Theorem 4.1]:

S(t)g = (u(t; 9),ue(-»9))
where g = (¢°,9) € Z, 4, u(t;g) is the solution of (4), (5) with f(t) = 0 and uq(-;g) is

the function u,(s; g) = u(t + s;g) defined in [—A,0]. S(¢) is a Co semigroup in Z, 4. The
solution semigroup St(t) of (6), (7) is defined by

ST(t)¢ = (v(t; ¢)7 vt( )

for ¢ = (¢°,4') € Z,: s, where v(t; ¢) is the solution of (6), (7) and v(-; ) is the function
ve(s; @) = v(t + s; ), s € [-A,0].
The structural operator F' : Z, , — Z;, R defined by

0
Fal’ = o (Fal's) = Ag'(-h-9)+ [ a(r)dag’(r - s)i.

As in S. Nakagiri [10] we have FS(t) = S3(t)F* and F*St(t) = S*(t)F*.
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We define the set of atta.ihability by

. t t

R={( / W (t — r)Bow(r)dr, / W(t+ - —r)@ow(r)dr): w € L([0,8; V), ¢ > o).
0 [1]

DEFINITION 1. (1) The problem (4), (5) is approximate controllable if R = 2,4, where R

is the closure of R in Z, 4.
(2) The problem (6), (7) is observable if for ¢ € Zy ¢ P[ST(t)9]° = 0 a.e. implies ¢ = 0.

THEOREM 1. Let F be an isomorphism. Then the problem (4), (5) is approximate con-
trollable if and only if the problem (6), (7) is observable.

Let A be a pole of the resolvent of A of order ky and let Py be the spectral projection.
Then the generalized eigenspace corresponding to A is given by

P\Z,, = Ker(AI - A)%,
For A € C set

0
AQ)=A—4g—e My, _ j eMa(s)A,ds,

0
Ap(A) =X — Aj — e~ 2042 —/ e*a(s)Alds.

THEOREM 2. The problem (6), (7) is ovservable if and only if Ker 5 N Ker Ar(\) = 0 for
any A € op(Ar). '

In the system (4), (5) we consider that the control space is a finite dimensional space
and the controller &, : CN — L1() is expressed as

N
Fow =) w;df,
i=1
where w = (wy, ...,wy) € CN and b, i = 1,..,N, are some fixed elements of L}(Q).
The adjoint operator &§; L%() —s CN of &, is given by
Bou = ((u,b}), .., (u, ),

for any u € L*°(9).

We suppose that the basis {@yy, ... y®am, } of P,\sz',g' is arranged so that
{#a1, .., éad, } span Ker(A— A7) where dy = dim Ker(A—~A7). Then {83 :i=1, weyda}
is a basis of Ker Ap()) and ¢y; = (¢g,.,e*'¢g,.) fori =1, ...,dy. We assume that

RANK CONDITION: For any A € ap(AT)
(h6%) - (83,4%4,)
rank .. =d,.
(B:8%) - (5% 834,)
Since ¢3; € L=(R) each (59, 43;) is meaningful.
THEOREM 3. If the Rank Condition is satisfied, then the problem (7), (8) is observable.

126




10.

11.
12.
13.
14.
15.

16.
17.

18.
19.

20.

REFERENCES

S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary
value problems, Comm. Pure. Appl. Math. 15 (1963), 119-147.

J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences
are unconditional, Ark. Mat. 21 (1983), 163-168.

D. L. Burkholder, A geometric condition that implies the ezistence of certain singular
integrals of Banach space valued functions, Proc. Conf. Harmonic Analysis, University
of Chicago (1981), 270-286.

. P. L. Butzer and H. Berens, “Semi-Groups of Operators and A pproximation,” ‘Springer-

Verlag, Belin-Heidelberg-New York, 1967.

. G. Di Blasio, K. Kunisch and E. Sinestrari, L?-regularity for parabolic partial inte-

grodifferential equations with delay in the highest-order derivatives, J. Math. Anal.
appl. 102 (1984), 38-57.

. G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math.

Z. 196 (1987), 189-201.
J. M. Jeong, Spectral properties of the operator associated with a retarded functional
differential equation in Hilbert space, Proc. Japan Accad. 65A (1989), 98-101.

. J. L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes Etudes

Sci. Publ. Math. 19 (1964), 5-68.

. S. Nakagiri, Spectral mode controllability and observability for linear systems with time

delay in Hilbert space, (preprint).

S. Nakagiri, Structural operators and spectral theory for differential equations with
unbounded time delay in Hilbert spase, Seminar note at Osaka University, 1988(in
Japanese).

S. Nakagiri, Structural properties of functional differential equations in Banach spaces,
Osaka J. Math. 25 (1988), 353-398.

S. Nakagiri and M. Yamamoto, Controllability and observability of linear retarded
systems in Banach space, to appear in Int. J. control.

R. Seeley, Norms and domains of the complez power A, Amer. J. Math. 93 (1971),
299-309. :

R. Seeley, Interpolation in LP with boundary conditions, Studia Math. 44 (1972),
47-60.

T. Suzuki and M. Yamamoto, Observability, controllability and feedback stabilizability
for evolution equations I, Japan J. Appl. Math. 2 (1985), 211-228.

H. Tanabe, “Equations of Evolution,” Pitman-London, 1979.

H. Tanabe, On fundamental solution of differential equation with time delay in Banach
space, Proc. Japan Accad. 64A (1988), 131-134.

H. Tanabe, Structural operators for linear delay-differential equations in Hilbert space,
Proc. Japan Accad. 64A (1988), 265-266.

H. Triebel, “Interpolation Theory, Function Spaces, Differential Operators,” North-
Holland, 1978.

K. Yosida, “Functional Analysis,” 3rd ed., Springer, Berlin-Gottingen-Heidelberg,
1980.

127



B ?&?;X‘La) ;,113% ‘ZFEXEFU\T“ T'Ffﬁ : *& ‘?r,_y_?\\th |

/%(2\ * E, 5?3 ( r?)‘r7\, ?":I F )—

SIS T IR 2T,

P =D + dwDi + B(,D) im R*

/RREL dW 20, dwe CURY \

BuD) . et mn cloasical,

popnlly amppotked V4. ep. }

O (W“)‘ﬁ;@s&ﬂm £, S= {1&“{‘\ o((x)-_'-o} T AR E
e & PRTUIBRRLFEREE RS,

Re23 S virw,

(D > (3) o (@

®» Fd73 ’%‘é\\'&%—zéo

S »v ko (\)'\'(3)0\:3 B < Po WWME

WHEDe X675 T3 s BRESI,

X=(x}, 1D eR*, >, % Ra andaik T, X0 e T, e,

P, wiowRypedliyghic in Us\Ts ( Uy R %% &% mbd.)

e TRETIS,

128



TaeT Ry 01*30__*,_____%,__”7 S
TRocnom,

T LaSe- wra®s

B U 20 mbd. = C>0 sk,

(R B0, € Cadty o xeJ

=
P miowlypollighic ok 2° T HD,

b Uen 26 C {me\R‘\ $@ay=0} REL fec, f(m=0,%§,u°)ﬂ‘

oS

S vankd e ,32 c>0 ok

- (Re 8130, 20+ Tm B4 (x30,21))*%
==

P 3 miowfypoellipie ok %0

s Cday ™ xed

nTEIRE TERIZIRD IS,

< Propeaidion & AR 3230 ¥hw,
x /\

BRI o TReoun 1.2 o vwvomk TH3 o

La,e ST, - pm%wm& Vd.op.
‘:ﬁ\.)

LaD) & eMw, oy Lig,o) e, d)
t?s<° 'tt‘C‘

eI epy 1 bdoeps wih e aypmiels €N (g mE)
3%, B AWDE Rasde BEIS.
_"_____é:"B_T______'_Z’?_:_S_lD, )€ T*R"\ 0 2 §°=(0," 0,10 v EXE
ML YR ARTEE 3D,

129



(HY * T et 20 umicmbde im TR0, TS ¢+ tomic amosth, mfd. i
TERMO0, e, T\ ¢+ vedoy andopoa i R™™ skl
wem, e 2, plDE wiceRypesllighic w RS
T2 aW={}y
o T

V\l:—{(s: 3%, o)eTzo(T*R“) §3=0 (Wejem sg'e\/}

EENE, M R ssY eVt » BE 33,
__R.y_“i_:‘ P, AWM ¥
I wne S, powiindy Rma,e/mmrg dogut O for (3124,
S 4t 5D Bl & U GO i L 1112 A WL T LR LT X I
e ____(HTJ': L= %mSI3 o' =1%=0D v33,)
AMDE ST, Am=Ga> W Tarlhzt
4G ADS <>
tEL, XTLT ADE,

ANDH = {(—S+a9w ) Qog A(® + N Log (1+5AD)

vH<L,

(M EARTEL, T3 SPEAREIR,

: 3'Xk < SO (k-—‘\)l)L, 3 QjER (}-‘—1)2)3),3 0020,3N°>/o)3 9030
—~—
~ X TCT Az, Ae=!| maan R° (k=1,2)
sk. " Vaza,, VY N2No, Y825, T Y@,9es’, T85>0, C>0
sk WL 1 pea. Rovw. of deg. 0 for 131>
) AppYn =g B |
A o “ % G,o) Uy |lgL\ C_{ \l P,\'\y\\gzﬂlmlg-\ + \\(l ~Xal 1,D))\S||
VG, owuh}

U vec®umd o <T&F, ’?_w

130




N E

w |

LEed, PEWRIPD = & WRW

-~

T o Pna?edibmm"i ok Lo BRofrflamEc 25 5T
HDa

PE)y=(0 d Son U= {1}
- -9 f Son Uy {0}
rHI,. N, E,
ANaD = {—s+a96} foa A + N fog (1+5AD)
( 0%%%<|, 020, N20O ond SeR)
Y Y36 %533y PnEeheP-eM) o amil R,
Py = U+ 3@ P+ 8 (AuPu—AuPuy+ - |
T 2@ e S (e
LB A, TSI PAGLD)E JRa Edi medify 3D,
P, D e €, 0) Py ,D)
33x. PAD) o W TR N
(2 Pox,3) = 52 + d ¥ + RuBiln0,t0%
+ €L E + €051 d) Log M + LD duﬂ!.,)m)"
+ @001 Tm (350, 21) (g MD) + €410,3) o) eg A(T)
+tiesluhHdnts Q.rg)‘\!) + L + Hanthig®d
foo IBI3 4.
L v e §%oeiss) , =0 Ushes) YunSe=1),
T ey , ReS, apRntnimel=¢ |
R.e °. reg’ mal-vm%ao\

\ %dDB R‘\(")D\ S C_up (i ~ e

| 9302 R.aymls e, <™

" /7 .
TyT A Cas, C.d,B WS %W I3\,

131




_%R:‘?-_@,g G0, ) 2 (4-¢) { W0 U ii* +( dbyry, Dl_'_\r)} -
t Rl R prmozd Doy, v
T Ra L 230,00 Tm 8(150,11) (Uegrton 1, 7 )
= Ce Lol + 0 G-xEomufr} o vel?

£ 23, ThE Rouk edimde v IS teic T3,

S0 Roaic edimde 75 Pup .o (NDE LIHRSUKN THI,
W (iR FBE, & L,I=0 T 305, Daale edimie o
g FRE 501, R (Re B10x:0,T0D,0, 1) ‘0 1B v 53, LAL
Mo RBwr sy, WP
3 Re (R B10x30, 21 D2y, W) + C £ (dydv,00) 2 ~C hul?
o Ve

MDD IR (D) (WFRYaHD, () afv,
R ( @30,0) Tm Bal:0,21) (g A A, ) & T L% I 755 G,
Thield o Lww & BE 33,
Lemma
) o M RUAS7HIR®, ey,
V‘E>0 3 Ce >0 s.k.
@ | Tom 816350, 20 (og Ao I*

< € (4D, 00) + Cod i+l (-G, li2 } fn vec®
J

t53 3w, Hoale edlimitn , (), ) %1% Poimcarli’s imag. 1< 8Y

WD (mPrep) E 2%,
V/4

132



ﬁ%ﬁicu,ﬁiénljgu)~(n<n;:m Smthr>;@'Haw@Lg_mﬂ

L Ao, S ©a wiouwRypsellopiiu © z3h3
W eE Lo

Kajomi ~ Wokodayaaht (11 ©  Propagalion of aimgulondivs fn
) sl Soatsn o8 pasvdodifouibi
spendding > to appean

133



Asymptotic Behavior and Stability of Solutions

to the Exterior Convectioh Problem

Toshiaki HISHIDA

Department of Mathematics, Waseda University

Suppose that a viscous incompressible fluid occupies the
exterior domain to a sphere of radius R > 0 centered at the
origin in three-dimensions. We consider the convection problem
for such a fluid heated at the surface (x| = R. The
temperature at the surface and that at infinity (|x| - ®) are
assumed to be maintained uniformly; they are, respectively,
presented by constants T  and T, with T, > T, 2 0. The
gravitational field g(x), which plays an important part in
convection phenomena, is given by g&(X) = g, v(1/1lx|) with a
gravitational constant &, > 0. If the temperature difference
Tw' T, 1is small enough, the fluid remains motionless and heat
is transported purely by conduction; such a steady state is
called the conductive state. On exceeding a critical
temperature difference, the buoyant force against the direction
of the gravitational field overcomes the stabiiizing effect of
viscous force and, as a result, derives the convective state.

In this paper we are concerned with the asymptotic
stability of the steady conductive state mentioned above. The
stationary convection problem, governing the velocity field

1(x).uz(x).us(x)). the temperature T = T(x) and the

u = t(u
pressure p = p(x), is described by the following system of
equations of motion, continuity and heat conduction (see, e.g.,

Chandrasekhar {2; Chapter [)):

uve = (1-X(T-T_))g + vAu - 2B Ix| > R,
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1) veu = 0, |xl > R,

u*vT

KAT, ix] > R,

vhere o (density at infinity), X (volume expansion
coefficient), v (kinematic viscosity) and «x (thermal
conductivity) are positive constants. The system above is
derived from the Boussinesq approximation: density variations
are neglected except in the gravitational term (buoyancy term),
in which they are assumed to be proportional to temperature
variations. For details, see [2]. We consider (1) subject to

boundary conditions

|x| = R,
(2)
u- 0, T- T as |x| & =,

We now make the following change of variables and functions:

/XRE,
og 2
- 20 _pv” %
S S F1 i

By omitting the asterisks for notational simplicity, (1) and (2)

are reduced to the nondimensionalized form:

u-vu = - /?(VT%T)T + Au - Vp, Ixl > 1,
veu = 0, Ixl > 1,
(BP) uvT = L ar, Ixl > 1,
u =0, T = /t, Ixl =1,
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u -0, T 0 as |x| + =,

where
XRg ]
T = 3 (T - T,) = Grashof number,
v w
g = % = Prandtl number,

ot = Rayleigh number.

Not so much has been known for (BP). However, it is
evident that for each Grashof number =T, (BP) has a solution

exactly given by

u(x) = 0, T(x) = %ET p(x) = - T + constant,

' 2|x|2

which corresponds to the conductive state. In what follows we
call such a solution the conduction solution. It seems to be
physically reasonable to expect that there is a certain critical
Rayleigh number (Ot)c such that the -conduction solution is
stable (resp. unstable) so long as ot < (01:)c (resp. ot >
(Ot)c). When the conduction solution is perturbed by
disturbance v = ‘(vlx,t),vi(x,0),v3(x, t)), 8 = B¢x,t) and x

= n(x,t), they are governed by the following nonstationary

problem:
8V | yevy = - /?(leT)e + AV - VKR Ixl >1, t >0
et x ] 14 ]
vev = 0, Ixt >1, t 20,
g% + vVl = % A0 - /T V.VT%T Ix}t >1, t > o,
(IBP) . —
v = 0, 6 =0, Ixl =1, t > 0,
v =+ 0, 0 -0 as Ix| » =, t > o0,



v(x,0) = v,(x), 0(x,0) = Go(x). Ixl > 1,

where (vo.eo) is given initial disturbance.

The principal purpose of this paper is to prove that the
solution of (IBP) exists for all time and tends to zero as t =» =
with respect to suitable norms under smallness conditions of
both the Rayleigh number and the initial disturbance. In this
context, the conduction solution is said to be asymptotically
stable. We are mainly interested in the decay property in H2
of strong solution for initial disturbance of class D(Al/4)x Lz,
where A is the Stokes operator in L2.

Up to now Galdi and Padula (3; Part 1] have studied the
stability of the conduction solution with respect to Dirichlet
integral. They have shown among others, that (i) (at)c is
characterized by the supremum of ot 8o that the linearized
operator around the conduction solution is nonnegative in L2;
(i) (oo, 2 1/16; (iii) when ot < (ov), and (vo,eo) is small

in Hl, the Dirichlet norm of {(v,8) decays like O(t-l/z)

as t
> o, Although they have been also concerned with instability,
we intend to concentrate our analysis on the stability problem
(several decay properties of disturbance). From our viewpoint,
it seems that (ii) and (iii) above are less than perfect.

In the present paper it is shown that (or)c =2 1/4 and
that the Dirichlet norm of {v,0) decays like o(t_l/z) for

lM)x L2. Moreover, we derive the LP

small (vo,eo) in D(A
decay for all 2 < p £ » with explicit rates as well as the H2
decay. By using the fact that the square root of the
linearized operator ha; an equivalent Lz-norm to the Dirichlet
norm, the desired decay properties can be deduced through the

following:

137



(a) {v,0) decays in L2.

-1/2 2

) in L°,
-1

(b) (vVv,v0} decays like o(t

) in L2,

(c) (8v/9t,80/9t) decays like o(t
To show (a), we treat (IBP) via the integral representation
inverted by the linearized operator, making use of an estimate
on the nonlinear term esséntially due to Borchers and Miyakawa
{1}, in which L2 decay for Navier-Stokes flows has been studied.
It is also proved that there cannot be any uniform rate of L2‘
decay of solutions, by improving the scaling argument of
Schonbek (6]. To show (b) and (c¢), we appeal to the weighted
energy method, which is partially similar to (3] (see also
Masuda (51).

Before stating our results, we introduce notation and some
definitions. All functions in this paper are real-valued and,
for simplicity, we use the same symbol for denoting the spaces
of scalar and vector functions. Set Q = (x € RJ; Ixl > 1.

By CS'O(Q) we denote the set of solenoidal (i.e., Vv = 0)
vector fields with components in C;(Q). For 1 £ p < o, I'lp
stands for the norm of LP(Q); especially for p = 2 we simply
write f-ll = I~l2. We define Lg(n) by the completion of
C;‘O(Q) in the norm H-#. Let P be the bounded projection
operator from LZ(Q) onto Lg(Q) along the decomposition Lz(Q)
= LZaeLZ@*, where L2 = (o e L2@); n e L3 @).  Then
the Stokes operator in Lg(ﬂ) is defined by Av = - PAv for v
€ DA = LZan HL@n H2@).  we also introduce the following
operators: BO = - A@ for 0 € D(B) = Hé(Q)n HZ(Q), S6 =

P(VET)0 and Tv = V'VTiT. It can be shown that s@ € L2(@)
and Tv € L2(Q) for all 0, v € ﬁé(Q), which is the completion
of Co(®) in the norm v-|.

In terms of the operators above, we formulate (IBP) to the

138



following Cauchy problem for evolution equations:

%{ + AV + /T S6 = - PCVTIV,  t > 05 v(O) = v,
(CP

ae . 1 R .

3t *t 5 BO+ JT Tv = - v-v@, t > 0; 6¢0) = 6,.

We make the following hypotheses throughout this paper:

1 KV
(H1) ot < %, or equivalently T - T, < 4xRg,’

/4

H2) v, € pal’%), o, e LZ@.

0 0

We now define the notion of strong solution of (CP).

DEFINITION. A pair of functions (v,0) is called a strong
solution of (CP) on [0,») with data given by (H2) if it belongs
to the class

/ 1

v € ccto,=;pal’) n co,»;pan n clo,= 2@,

1

0 € CCr0,#);L2(R)) N C(0,=;D(B)) n cleo,=;L2Q)),

and satisfies (CP) in L:(Q)x L.

For & > 0 we introduce the following set of the initial
disturbance (vo.eo):

1/4 1/4

K, = (vy € Dalt/%), o, € LZ@): 1A

e vol + Ivol + IOOI < 8}.

Our main result on the asymptotic stability of conduction

solutions reads:

Theorem 1. Suppose that (H1) and (H2) hold. Then there
exists a positive constant € = g(o,t) such that whenever
(vo,eo) € KS’ (CP) has a unique strong solution {(v,0) on [0,®)

with the following decay propertyf
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ivitHr!
‘H

20 ags t » =,

2 2

()]

Theorem 1 indicates that {(v,0) decays in Lp épaces for all
2 £ p £ o>, By the following theorem we give some decay rates

in such spaces and further decay properties.

Theorem 2. The solution (v,8) in Theorem 1 possesses the

following decay properties as t + = with explicit rates:

() Bvel + 10CH 12,

0 if 6 £ p £ »,

dé

- dv de -1
(ii) 'ET“’" + Idt(t)l

o(t 7).

(iii) The pressure gradient Vm associated with (v,0) decays
-1/2)

like Hvm(t)d = o(t
(iv) If, in addition, (v,,0,) € LYQ) for some 1 < q < 2,
then

O(t_(3/q-3/2)/2) if

oo

<q<2g
vct)l + 19 =

th-1/2, i f

[

o( £ q £ <,

wvhere n > 0 is an arbitrary small number.

For (vo.eo) € Ke we denote by Ot(vo,eo)] the solution
{v,0}) in Theorem 1. Without the additional assumption 1like
(iv) of Theorem 2, we have the lack of uniformity of L2 decay of

{v,0}) € OIKSJ in the sense that:

Theorem 3. For all o € (0,g), there exists no function H(-):
R+ - R+ with the following properties (1) and (2):

(1) H(t) » 0 as t = =.
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f11]

(21

[31]

(4]

(61

{61

(2) For all (v,0) € OEKu] and t > 0,

Iv(t)l + 16(t)N < H(t).

For the proof of theorems above, see [4].
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Reonance of The Ordinary Second Differential Operators
on The Half-Line.

KAZUuo WATANABE

Department of Mathematics
Gakushuin University

1. Introduction

We shall consider the following second order differential operators on
a half-line [0, 0), one with the Dirichlet condition and another has a
”jump condition”.

) { Hu = —d'p?u on L?(0, 00),

u(0) = u(1£0)=0.

2

H,u= —pzuon L?(0, 00),

(1) u(0) = 0, u(1—0) = u(1+0) = u(1)
u'(1-0) - ¥'(1+0) = agu(l).

It is well-known that H has embedded eigenvalues {n?x?},5, and con-
tinuous spectrum [0,00). Then we expect that these embedded eigen-
values are ”resonances”, i.e, the eigenvalues of H are not stable with
respect to H,.

In this paper we shall show H, — H in the norm resolvent sense. And
we shall examine “resonance” and in fact calculate ”exponential decay”
of (exp(—itH, )y, ¢), where ¢ is the eigenfunction corresponding to the
eigenvalue 72 of H.

THEOREM 1. Let Ao = 1/(x? + 1) and ¢(z) = v/2sinxz, or 0 < z <
1, =0, or 1< z. Then we have

(L) |(exp(—itR,(=1))p, 0)] = €T 4 o(1), ¢ >> 1,
where R,(—1) = (H, +1)~! and

2%

I'=avmyr
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THEOREM 2. Let ¢ be the same as in Theorem 1. Then we have
(1.2)

(exp(—itHo,)p, ¢)

_ / oo eitr? 472 X2 sin? AdA

“ Jo (@2 =(A+1i0)?)2 (asin X — Aeir)(osin A — Ae—iA)’

THEOREM 3. Let ¢ be the same as in Theorem 1. Then we have
(1.3) |(exp(—itH,)p, p)] = C(a)e~ T} +o(1), ¢ >> 1,
where I'(a) > 0.

2. Livsic matrix and Resonance

In order to prove Theorem 1, we shall use the result of [O]. Let H
be a self-adjoint operator in a Hilbert space H, P be the orthogonal
projection associated to the eigenvalue Ao of H, K = Range P ,dimK <
oo and P := I—P. Let W be closed symmetric such that D(H) C D(W).
We define H(k) as H(x) = H + kW. Then ”Livsic matrix” B(z, &) is
the operator in K having the following form:

(2.1) B(z,£) = Ao + kPWP — k> PWP(H(x) — z) 'PWP,

where H(x) = PH(x)P.

DEFINITION 1. (A. Orth [O].) The operator family H(x) has a simple
resonance at \g, if Ao is nondegenerate and if there are a real neigh-
borhood I of \q, a real neighborhood U of 0 and a densely embedded
subspace Hy of H with its dual H_, such that

(i) for k € U, (H(x) — z)~! has a continuous extention from C \ R
onto z € I as an operator in B(H,,H_). This continuation is Lipschitz-
continous with constant L(k) = o(x~?%);

(i) K C Hy, and W(K) C Hy;

(ili) for k € U and all possible eigenvalues u(x) € I of H(&), the
associated eigenvectors are in Hy.

REMARK. Lipschitz continuity of the condition (i) is weakened as below.
(PWP(H(x) — z)"'PW P, ¢) is Lipschitz continuous with constant
o(x?).

THEOREM 4. (Theorem 1.5 in [O], A. Orth). Let H(x) have a simple
resonance at Ao and ¢ be in K with ||l¢|| = 1. Then for small & there
exists a unique solution A(x) such that

A(k) = Re(B(A(x), k)¢, ¢)-
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Furthermore we put B(k) = B(A(x),x) and I'(s) = —Im(B(r)p, ¢).
Then we can choose 6(x) > 0, such that for I'(x) = 0-6(x) = 0, while
for I'(k) # 0 and k — 0, max{6(«), s2L(x)6(x)/I'(x), I'(x)/6(x)} — 0.
Let J(k) = [A(x) — 8(«), A(x) + 8(«)] and E, be the spectral projection
of H.. Then we obtain E.(J(x)) — P strongly.

THEOREM 5. (Theorem 1.8 and (1.8) in [O], A. Orth). Let Ao be a
simple resonance of H(x) and ¢ € K with ||p|| = 1. And we assume
that I' = liMfm,50,:— 2, IM(PWP(H — z)"'PW P, ) # 0. Then for
¢ € K with ||p|| = 1, we have

- -Is?
(2:2) (e # "), )| = e=T*™ + o(1).

3. Propositions and Lemmas

PROPOSITION 1. Let ¢ € C\ [0,00) and V,(¢) := R,({) = R((), where
R(¢) =(H —¢)~! and R,({) = (H, — ¢)~!. Then V,(¢) has the kernel

given as

(3.1) w(Gi2,9) = —-s9(G 2)9(Gi0)
where

sin/Cz, 0<z<1,
(3.2) 9(¢z) = { sin \/Zei\/(_(z—l), 1<z,

and p(o,¢) = (\/Z'e“\/‘- ~ asin/Q)sin ¢, Imy/C > 0. V,(¢) is the

operator of rank one and the the representation is

1
3.3 Vo (Q)u(z) = ———(u, §(; - ;z), u € L*0,00
(3.3) (€)u(z) e, C)( 9(¢; - Ne(¢; ) (0, 00)

where g is the complex conjugate of g.

The weighted L?*(0,00) is defined by {u € L? (0,00) : (z)*u €
L*(0,00)}, where (z) = (1 + 2%)!/2. By Proposition 1 we easily ob-
tain the following Lemmas 2 and 3.

LEMMA 2. Let { € C\[0,00) and 3,4’ € R. Then we have ||V, (¢)||,,.» —
0 as ¢ — oo, where || - ||,,,+ is the B(L**, L>*") norm.

LEMMA 3. For s,s' € R and { € C\ [0,00), there exsists an opera-
tor W(() such that oV,(¢) — W(() (¢ — oo) in B(L>*, L%*"). More
precisely the operator W(() has the kernel

(3.9) w((;z,y) =

i/zy(c ;2)9(¢ )

sin?
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where g({; z) is the same as in Propasition 1.

LEMMA 4. Let Ao = 1/(x% + 1) be the eigenvalue of R(—1), P be
the orthogonal projection cooresponding to the eigenspace of the eigen-
value Ao and P := I — P. For s > 1/2 we put H; = L?*(0,00) and
H_ = L2~*(0,00). Then the operator R,(—1) satisfies the condition of
Definition 1 regarded as & = 1/p(0).

PROPOSITION 5. Let P, be the projection from L?(0, co) to L?(0,1) and
P, =1 — P,. Then we have

(3.17) B B
(A(2)Pg, ) = — (1P Pgll® + l| Pagll*) /2

1 1 2
- 2_22 n2x34+1-— llzl(Plg$¢n)|
n=2
| sin i|?

T 222(1 — iy/—1 + 1/2)?

where ¢, (z) = V2sinnnz.

LEMMA 6. For small € > 0 and small | > 0, let o be sufficiently large.
Then the equation o sinz — ze'* = 0 has unique solution z(¢) in {z €
C:x<Rez<wn+¢ 0<Imz<l}

4. Proofs of Theorems

ProoF OF THEOREM 1: We shall use the notations in Lemma 4 and
its proof. Let B(z,0) be Livsic matrix of R,(—1):

1 1 - O
(4.1) B(z,0) = Ao+ p(—ajPWP - ;(;-)-;PWP(R.,(—I) - z)"'PWP,

where Ag = 1/(x2 + 1). By Theorem 5 it is sufficiently to prove that
(4.2) _ _
F'= lim lim ¢*Im(PV,P(R,(-1) - 2z) ' PV, Py, ) > 0.

Imz>0,z—Ag0—00

Since the contribution of the first and second terms is zero for (4.2),
(4.2) is equal to

.9’

sini

1
lim Im =
Imz>0:—=20  22%(1 - iy/-1+41/z)?
_ = Im 1
T (14722 (1 +in)?
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_ 2x3
- (1 + =2)*

Here we used \/—1+1/z — —n, because Im1/z is negative.

PROOF OF THEOREM 2: We shall use spectral representation of H,.
Then we have

(4.3) (exp(—itH,)p, )
_2% [ & (Roll ~ i0) ~ Ro(u+i0))p, p)d
- 0°° e (Valn —i0) - Vo (u+ i0))p, o)l -

I Rl ) .
| R~ i0) ~ R+ D), o)
0
=0 + "
Putting k = p + 0, we caluculate (V, (k)¢ ¢).

(4.4) (Vo (F)p, ¢)
_ —xsin vk (sin([lc‘- ) sm(\/_+ x)) (%)
plok)(k-72) \ VE—-=x VE+
_ 2x%sin’ vk
~ plo, k)(k —x?)?

We substitute

1 1 1 ,
(4.5) i (y—m—wz_yﬂo-w?)"5("_")’

# —10 = —\/p +10 and (%) into the part of V, (u — i0) of (4.3).

(4.6)
1 * it :
27ri o € (VG(I‘ ‘0)¢’ ?)dl‘

1 [® —e*#xsiny/p—10

“2xi Jo plo, p— 0)(s — 0 — 27)
y (sin(\/pTz'U— 7)  sin(y/p =0+ ﬂ'))
Vi-10—x Ve-0+x )F
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1 /°° ettr 1 27 sin /i + :ﬁd“

27 Jo —osin/p+ /peVE p+i0 — 72 p+i0 — 2

Hence (4.3) is equal to

(4.7)
1 /'°° —2x%e*# sin? \/u + 10 d
2xi Jo  p(o,p—i0)(p + 10 — x2)2 K

1 [ - 2x%*#sin® /u + 40

_21n' o plo,p+i0)(p+i0 — x2)2 H

41r i e'*# sin \/ft\/fi sin f

T 27 ), ()2

th\ /\2

sin? A

=41r/(; (A +1i0)2 — x2)2(osin A — Ae*r)(asin A — z\e“’\)

PROOF OF THEOREM 3: By Lemma 6 we shall change the integral path
in Theorem 2. For arbitrary € > 0 and I > 0 (fixed), let o be sufficiently
large. We divide the integral path into 5 parts;

Ci={s:0<s<w—¢},
Co={r—c+isl:0<s<1},
Ci={r—ec+2s+il:0<s<1},
Ci={r+e+i(l-8)l:0<s8<1},
Cs={r+e<s<o0}
For simplicity we put f,(z,t) as below.
eitz? g2

sin® z

(4.8) fol(z,t) =

2

olsin‘z —20zsinzcosz + z2

Cj3 part: We shall consider the numerator of f,(z,t). For 0 < s <1, we
have

Ieit(‘t—e+2u+il)3(7r — e+ 28 + 11)2 Sin2(1r — e+ 236 + tl)l
<|zsin(x — € + 2s¢ + il)|Pe~ 27 —¢),

Hence we have

(4.10) |4w/ (22 7y [, (2, 1)dz|
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4 : 2, 2tl(x—e)
S/ wlizs:n z|%e ‘ \dz|
cs 122 — 7%?|o?sin? z — 20z sin z cos z + 22|

Using the residue theorem, we obtain that

(4.11)

w 1
4’,‘/0' (= +70)7 =)z lo(®:1)de

=8 lim (x ~ +(0)) = s a0

5
1
+41rnz=:1/" (1—2:2—)2fa(z,t)dz

_822ie'**(?)’ ;(g)? sin? z(0)
B (2(0)? - x2)?

1
X (o'sin z(0) — 2(a)e=#*(9))( cos 2(0) — €*(?) — iz(g)ei*(M)

5
+ Z/ ...dz.
n=1 n

Therefore we have

(exp(—itH,)p, )| = C(o, €) exp(—2I(x — €)t) + o(1),

47|z sin z|?|dz|
where C(o, ¢ =/ .
(o,¢) s |22 — 72|2|o?sin? z — 20z sin zcos z + 22|
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