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Stationary Problem for the Navier-Stokes Equations
in Exterior Domains.

Hideo Kozono
Department of Mathematics, College of General Education,
Kyushu University, Fukuoka 810, Japan

Introduction.

Let Q be an exterior domain in Rn(n e 2), i.e., a domain

having a compact complement R"/Q, and assume that the boundary

aQ is of class C2+u with 0 < u < 1. Consider the following

boundary value problem for the Navier-Stokes equations in Q:

-Au + u*Yu + Vp = f in Q,
(N-S) divu=0 in g,
u=0 on 239,

where u = (ul(x),---. un(x)) and p = p(x) denote the unknown
velocity and pressure, respectively; f = (fl(x),---, fn(x))

denotes the given external force.

The purpose of this report is to give global L%-bounds and a
uniqueness criterion for the weak solutions of (N-S). On account
of the nonlinear term u+Vu, we need a certain density property

for solenoidal vector fields not only in LY but also in the

r for 1 < q, r < », because we have the

intersection L9L
different behavior at infinity of Au and u-Vu for weak
solutions u of (N-S).

First we shall prove regularity at infinity of weak
solutions u and its associated pressure p of (N-S). To this
end, the same problem on the linearlized equations of (N-S),

i.e., the Stokes equations will be also investigated. For bounded

1



domains, Cattabriga (7] showed the most general result in L9 on

the Stokes equations. OQur result (Lemma 2.5) clarifies a
typical difference between interior and exterior problems. When
n =3, Fujita [9] gave an explicit representation formula of

weak solutions of (N-S) for smooth f decreasing rapidly at
infinity, which seems to give a similar application to ours.
However, our method enables us to treat a much wider class of f.
Our second result is on a uniqueness criterion for weak solutions
of (N-S). This criterion in the stationary problem seems to be

closely related to that of Serrin’'s [20] in non-stationary case.




1. Results.

Before stating our results we introduce some notations. For

1 <qg<w qg'=q/(q-1). | Hq and (-, <) denote the usual norm

of Lq(Q) and the inner product between L%3(Q) and Lq'(Q),

respectively. ﬁi'q(Q) is the completion of C:(Q) with respect

to the norm HVqu. Since Q 1is an exterior domain, ﬁi’q(Q)

is larger than Hi’q(Q). H-l'q(Q) 1= Hi'q (Q)'(X': dual space of

X). W N_y . denotes the norm of H"1*%(@) defined by WEn_y o ois

sup{I<f, ®>1/IV¢Il ; & € C_(Q), ® » 0}, where <-,-> is the
ql
duality paring of H 1:9(9) and HL'V()*. c2@)", LY@, .-,

" n2 q n2
and CO(Q) , L°(Q)" ,--- denote the corresponding spaces for the
vector-valued and the matrix-valued functions, respectively. 1In
such spaces, we shall also use the same notations |t Hq and
(-, ). C: 0(Q) is the set of all C"-vector functions ¢ =
(¢;,---,¢.) such that div ¢ = 0.

By the Sobolev 1inequality, the homogeneous Sobolev space

ﬁi'q(g) can be chracterized concretly as follows.
For 1 < q < n, we have

1.0 B U@ = fu e LMV (9); o e LUDT, u,0m o).

aQ

For n $ q < », we have

1,900y 2 (u « L2 (D). Qg0 -
(1.2) U@ = tw e L (D W e LUDT, u|ye- 0.

3



Moreover, we have the following assertions on a density
property for solenoidal vector fields.
s | _ sl.q n,
PROPOSITION 1. Let X (Q) = {uv el S (R divu = 0}.

Then for all 1 <q<wo, 1<r < o, C: 0(Q) is dense in

-q “r
XU(Q)nXU(Q) under the norm HVqu + HVuHr.

PROPOSITION 2. Let q and r satisfy the following cases
(1) or (ii):
(i) 1 < g<n and 1 <r < o
(i1i) n £ q < r < o,

© -a r n
Then CO'U(Q) is dense XO(Q)nL Q.

For the proof, see Kozono-Sohr {16].

REMARKS 1. In case q =r = 2, Heywood [14] showed the same
result of Proposition 1.

2. When Q is the whole space R" or a bounded domain,

Masuda [17] and Giga [12] proved that Cg 0(Q) is dense in

1,2 r n 1,2 o
HO'U(Q)nL v, where Ho,u(Q) is the closure of CO'U(Q) in
Hl'z(Q). In Remark after the proof of Giga [12, p.210], he gave

a conjecture that one can prove the same result even in unbounded

domains.
Our definition of a weak solution of (N-S) is as follows.

DEFINITION. Let f ¢ ﬁ—l'z(Q)n. Then a measurable function

u on §Q 1is called a weak solution of (N-S) if
(1) u e x2(2);

(11) (Vu, Ve) + (u-Yu, @) = <f, ¢> for all ¢ e Cy (9).

g

4




Concerning the existence of weak solutions, see, e.g., Temam [24,

p.169,Theorem 1.4]. For every weak solution u of (N-S) there is
a scalar function p e Lioc(ﬁ), unique up .to- an additive

constant, such that

(Vu, W) + (u-Yu, ¢) - (p, div &) = <f, >

holds for all v e C:(Q)n. This means that the pair {u, p}

satisfies (N-S) 1in the sense of distributions. We call such P
the pressure associated with u (see Fujita [9, Definition 2.31).

Our result on regularity of weak solutions of (N-S) reads:

THEOREM A. (1) (associated pressure) Let ngzs3 and f e

-

H_l'z(Q)n. Suppose that u is a weak solution of (N-S). Then

the pressure p associated with u can be chosen in the class

p e L2() + LM/ (n-2) gy

(2) (more regularity) (i) Let n =3 and f e ﬁ_l'z(Q)sn

I:l_l'q(Q)3 for 3 S q < », Suppose that u 1is a weak solution of

(N-S) and that p 1is the pressure associated with u. Then we

have

. .
Vu e Lr(Q)3 for 2 Sr £q, ue LS(Q)3 for 6 £ s < w,
p e LY(Q).

In particular, if q > 3, we have also u e LQ(Q)S.

(11) Let n25 and £ e B 1'2(0)"m 1 9Q)" for n/(n-1) < q

n/(n-2). Let u and p be as above. Then it holds

2
Wu el (" for qsr s 2,
uelS(2)2 for na/(n-q) s s s 2n/(n-2), p e LI(Q).

Next we shall proceed to the uniqueness criterion for the
weak solutions of (N-S).



THEOREM B. Let n 23 and f e HY'2(2)". Let u and v

be weak solutions of (N-S). Suppose also_that u satisfies the
energy inequality

(E.1.) HVuug S <f, w

and that v e L™(2)™. Then there is a positive constant X such
that if Wivil, S A, we have u =V in Q.

REMARKS. 1. If Q 1s a bounded domain in R"™ with n 5 4,
then every weak solution u belongs to Ln(Q)n and satisfies

the energy equality HVuug = <f, u>. Hence in such a case, we

have u = v under the assumption that IIfli_; o is sufficiently

small (see Temam [24, p.167,Theorem 1.3]).
2. In the non-stationary Navier-Stokes equations, Sohr-

von Wahl [23] and Masuda [17] improved Serrin's uniqueness
criterion [20] for the weak solutions on 9x(0, T) 1in the spaces

c(ro, T1; L™(M and L®0. T; LM)™, respectively. So

Theorem B may be regarded as the similar criterion of Serrin’s
[20] for the stationary problem.



2. Preliminaries.

2.1. First we consider the boundary-value problem of the

equation:

(2.1) divu=°f in Q, u 0 on 23Q.

The following lemma is essentially due to Bogovski [4]; for the
special formulation and extension, see Borchers-Sohr [6].

LEMMA 2.1. Let 1 < gq < o, (1) There is a bounded operator
£ s>u fron LY to HI'YUQ" such that div u = f.

Using the well-known closed range theorem and the Sobolev
inequality, we obtain immediately from this lemma the following
result.

COROLLARY 2.2. (1) Let 1 <q < ® and let Xg(Q) = {u e

HL'9(2)™; div u =0}. ‘Suppose that f e B 1'% (@)" satisfies
<f, u» = 0 for all u e Xg(Q). Then there is a unique p €
L9 () such that £ = Up, i.e., <f, & = -(p, div ¢) for all
¢ e HL'Y"  and_that wpn s cufu with C independent
q’ -1,q°
of f.
1 -

(ii) Let 1<q@<n and let u e Lloc(Q) with Yu e

' *
Lq(Q)n. Then there is a constant Ku such that u + Ku e L (Q)

with 1/q’ =1/q - 1/n and fha + Kuu . S CIIVuIIq with Cc

q .
independent of u. Here Q is the closure of 9 and u e
L1ge(®) means that u e L'(nB) for all balls B c R® with
QNB w9,




For the proof, see Giga-Sohr {13, Corollary 2.2];

REMARK 2.3. Using Corollary 2.2(1), we conclude from
Proposition 1 that for each f e 1 1:9(Q)" there is a unique
p e L9(Q) satisfying f = Vp if and only if <f, %> = 0 for

[
all ¢ e CO'U(Q).

The following variational 1inequality in L9 is simple but
plays an 1mportant role for our purpose; see also Simader-

Sohr [22].
Let 1 < q < o, Then there is a constant C = C(n, q) > 0

such that

(2:2) Nl S Csup{1(Yu, V&) I1/U0eli ;0 % ¢ € Co(R™)}
q'
holds for all u e LI  (R") with w e LI(®".

Indeed, note that the space H = {A¥; b e Cw(Rn)) is dense
o

in Lq'(Rn). Then using the Calderon-Zygmund inequality o

q
S Chiawn (b e C:(Rn)), we have for each i = 1,---, n
q
sup{1(Yu, V&) I/19¢lIl ; ¢ & CO(R"), ¢ » 0)
Q
2 supl{1(Tu. V(3)) 17U9(3, 00N 5 ¥ e Co(R"), ¥ # 0}
2 Coup(1(3yu. a¥) 1/NaWll 5 ¥ g.c:(Rn), ¥ # 0)
- Csup(1(3,u, &) I/llEH ;& < LY (R, g » 0)
= ciagul



with C = C(n, q) and (2.2) follows.

(ueld (RM: wu e LYRMH™. For uell'? we

+1,q
Let L loc

denote by [u] the set of all v e Ll'q such that u - v is

constant in R" and define the space LI'3/R = {[u]; u e L1+
with norm l[ulll := |IVull . Clearly Ll'q/R is isometric to
l.q q
L /R
the space Gq := {Vu; [u] e Ll'q/R}(c Lq(Rn)"). By the theory of

Helmholtz decomposition(see Simader-~Sohr [22] and Miyakawa [18]),

Gq is a closed subspace in L4r™M". Therefore, Gq is a
reflexive Banach space. Let us consider a 1linear operator
By: Vu e Gy » B (W) e G;, defined by

<Bq(Vu). v> = (Vu, V) for Vv e Gq, ,
where <, o> denotes the duality between G;, and Gq.. Then

by (2.2) we see that Bq is injective and that its range is

closed in. G;,. Since B; = Bq,(T': adjoint operator of T), it

follows from the .closed range theorem that Bq is surjective and

hence bijective. For the proof of solvability of the Stokes

equations in Rn. we shall make fully use of the bijectivity of
*

: - ).
the map Bq Gq Gq

2.3. Let us consider the Stokes equations:

(2.3) -Au + 9p = f, divu=0 in R"

Recall that ig(Rn) = {u e ﬁi'q(Rn)n; div u = 0}. Then we have



LEMMA 2.4. Let 1 <q<w® 1<r < o For ever f e

AL 9" a1 T (R")",  there is a unique pair {u, p} with

u e ig(R“)nx;(R“) and p e Lq(Rn)nLr(Rn) such that

(2.4) (Yu, ) - (p, div ¥) = <f, ¥

for all W e C:(Rn)n. Such {u, p} is subject to the inequality

(2.5) HVqu + IIVuIlr + Hp"q + Ilpllr s cinfu_ + it ),

1l.q i,r

where C = C(n, q, r).

Proof. By the definition of the space Hi'q (Rn), we see

that the operator -V: Hi'q (R") » LY (R™™ 1is injective and has
a closed range. Hence by the closed range theorem, the adjoint

operator div = (-9)*: LR » n~ 1 9(g") is surjective. Since
the null space Ker(div) of div is a closed subspace in

LrM™", for each h e H_l'q(Rn). there is at least one u €

LYR™™ such that

(2.6) -(u, V¢) = <h, ¢> for all ¢ € c:(R“) and that

lult, S Chbll_y o

with C 1independent of h. Let us recall the space Gq and the

bijective operator Bq: Gq > G;. in the previous subsection.

since u eL%RM"., the map 9V® eG . > -(u, V#) eR is an

element in G;. , SO we can choose 1§ € Hi'q(Rn) so that

10



(2.7) (Un, Vo) = <Bq(Vn). Vé> = -(u, V) = <h, ¢>

for all ¢ e‘C:(Rn). By (2.2) such »n 1is uniquely determined by
h and so we can define a bounded 1linear operator

sg h e F19UR"Y) 2 ne HZUR®) by the relation (2.7). If in

addition, h e H 1'r(Rn). we have also ﬁ € Hi'r(R"). Indeed,
with q replaced by r, we see by the above argument that there

is a unique n e ﬁi.r(Rn) = Ll'r/R such that (Vn, V) = <h, ¢>

for all ¢ e C:(R") and fvnil, s Chhll_; . with € = C(n, r)

independent of h. Thus we get n € Ll'q, n e Ll’r and n - n e

1

}(Rn) satisfies A(m - n) = 0 in the sense of distributions.
loe

L

Then it follows from Weyl’'s lemma that g5 - n is of class C%

and harmonic in Rn: so is Vn - Vn. Applying the mean value

property and the Holder inequality, we get

(2.8) IVn(x) - Un(x) | $ c(MVnuqlxl'“/q + HVnHrle_n/r)

for all x(» 0) e R" with c independent of x. Then the
classical Liouville theorem yields that 9n - Yn = 0 and hence
n - n = const. in R". This shows that 1n e Ll'r and hence

n e ﬁi’q(Rn)nﬁi'r(Rn) for n in (2.7). From this we conclude

now that S: h-»1g is a bounded operator from ﬁ_l'q(Rn)n
5 TRY to B URMmLT(RY)  with

HVan + HVnHr S C(Hhnh_ + (Ihil_ ),

1'q
where C = C(n, q, r) 1is independent of h.
) Using S, we give an explicit formula for the pair {u, p}

1l,r

of solution in (2.3). For each f e ﬁ—l.q(Rn)nn ﬁ—l,r(Rn)n' we
define {u, p} by

11




u = Sf + S(vdiv S8f), p = -div Sf.

Here St = S(fl.'-'. fn) = (Sfl.-of. an) and correspondingly

for S(vdiv Sf). Now it 1is easy to see that such {u, p}
satisfies (2.4). To show that div u = 0, we observe that

(div S(VW) + ¥, 8¢) = 0 for all ¥ e LIRM, ¢ e cO(R™).

Since the space H = {Ad; ¢ € CZ(R“)} is dense in Lq'(Rn). “the

above identity yields that div S(V¢) = -w for all ¥ e LI(R").
Then we get div u = 0 and see that the above pair {u, p} has
the desired properties.

Now it remains to show the uniqueness. Let {u’, p'} with
U oe ig(nn)nxg(kn) and p' e LYRMNLT(R") satisfy (2.4).

Then u=u-u’, p=p-p' satisfies (2.4) with f = 0.
Applying the operator div to both sides of the first equation,

we get Aﬁ = 0 1in the sense of distributions in Rn. Hence p

is of class c® and harmonic. Since p e Lq(Rn)nLr(Rn), it

n

follows from the Liouville theorem that p = 0 in R . Therefore

(Va, 9¢) = 0 for all ¥ e Co(RM)™. From (2.2) we obtain u = 0.

This completes the proof. . 1

12



2.4. In this subsection we show a regularity property at
infinity for solutions of the Stokes equations in Q:

-Au + Vp = f, divu=0 in Q,

(2.9)

u=0 on 2392.
Compared with the case when Q = Rn. we have restriction on r
in Lemma 2.4. Let us recall the trace theorem for vector

functions. Take R>0 so that BR = {x e Rn; Ixl < R} > 3

and set 9 =@ nBp,  EVQ = (u e L™ div u e LI(g))

(1 < q < »), Then it follows from Fujiwara-Morimoto [10, Lemma 1]
that the boundary value u-v of the normal component to

3, = aQu{ix! = R} exists as element belonging to w-l/q.q(agR)

= wl/q.q'(aQR)* and that the following generalized Stokes

formula holds:

(2.10) (div u, ¢)Q + (u, V¢)Q
R R

—<u . - 1.q°
<u-v, ¢ aQ>3Q + <usvp, ¢ aBR>aBR for ¢ e W (QR).

Here v and YR denote unit outer normals to 23R and aBR =

{Ix!1

R}, respectively; <-.->aD denotes the duality paring of

w‘l/q'q(an) and wl/q'q'(an). Moreover, ‘the map u e Eq(QR) 2

u-v € w-l/q,q(agR) is surjective. Our regularity result now

reads:

LEMMA 2.5. Let 1 <q<e® and n'(=n/(n-1)) < r < . Let

[=})

£ e YU i 1 T(@)".  Ssuppose that {u. p} & x3(2)xL%(Q) an

satisfies (2.9) in_the sense of distributions in Q. Then we

' 2
have vu e L' ()" and P e LY(Q). 1n case 1 < q < n, we have

13



in particular, u e XE(Q). Incase n Sr for n &3 and in

case 2 <r for n =2, we have also u e X;(Q).

Proof. Step 1. We shall first show the local regularity
(2.11) u el T, poelT(R).
This is trivial if n' < r S q. Suppose that q <r < =». Let us
first assume that 1/q - 1/n S 1/r. Choose N(>R) sufficlently
large and take X € C;(Rn) with 0SS X331, Xx(x) =1 for

IXI SN, Xx(x) =0 for 1X1 & N+1. From (2.9) we get the
following equation on QN+1 = QnBN+1:

(2.12) _A(xu) + 9(xp) = £, div (xu) = g in Q...

Xxu = 0 on 89N+1.

where f = xXf - 2UX*Yu -AX-u + VX-p, g = VX-u. Since 1/q -

1/n S 1/r, by the Sobolev inequality we have the continuous
embeddings L9y .) c H 1 T(y. ) (=HE T (9, ") nl 9. ) c
N+1 N+1 o N+1 ' N+1
LY (g ) Hence from the assumption f en 1'T(e ) and
N+1'° ’ N+1
é € Lr(Q ). Since J é dx = -J u-v dS + I Xxu+-v dS = 0,
N+l Q a0 3B
N+1 N+1
it follows from Cattabriga [7]) = and Kozono-Sohr [15,

Proposition 2.10] that Xu e Hl'r(Q )n and Xp e Lr(Q

N+1 N+1)'

Since X =1 on QN' we obtain (2.11).

We next consider the case 1/q - 2/n S 1/r < 1/q - 1/n.
1 * *
From the above argument we have u e H -q (QN)n and p e L9 (QN)

with 1/q' = 1/q - 1/n. Taking q' instead of- q and then using

the same argument as above, we get Uu e Hl'r(QN_l)n and p €

14




Lr(QN_l) for r >n’' with 1/r 2 1/q - 2/n. Proceeding in the
same way to the case 1/r < 1/q - 2/n, by the bootstrap
argument with finite sfeps. we get (2.11) for all r > n’'.

Step 2. Since f e ﬁ-l.q(g)nnﬁ—l.r(g)n, there 1is a

n? _r,,n?
function F e LUD™ nLF(Q) such that f = div F, 1i.e., <f, ¢>

= -(F, v#) holds for all ¢ e Co()".

Indeed, ﬁi'qf(Q)nﬁi'r'(Q) is dense in ﬁi'q'(Q) and in

BT (@), Hemce (HL'% () + HL-TT(@))* = A1 Y(@)ni 1 T (Q) (see
Aronszajn-Gagliardo [2, Theorem 8.3]). Consider the bounded

operator -V: ﬁl'q'(Q) + ﬁl’r'(Q) > Lq’(Q)n + Lr'(Q)n. Using the
o o :

closed range theorem for the adjoint operator div = (—V)*

LY ()™ » B 1 Y@y 1 T (@) in a similar manner as in

n? r,,n2
(2.6), we get a function F e L9(Q) n L (Q) with f = div F.
Now the first equation of (2.9) can be rewritten in the
following divergence form:

(2.13) div (T(u, p) + F) = 0 in Q,

where T(u, p) = {Tij(u' p))lsi.JSn; Tij(“’ p) = -61jp + (aiuj +
ajui). From the assumption and the argument in Step 1, we see
T(u, p) + F e Eq(QR‘)nnEr(QR)n and hence we can take H e
Eq(QR)nnEr(QR)n such that

(2.14) Hev|ag = (T(u. P) + F)-v|ge. Hev|, \p= ©.

set H(x) = H(x) for x e Q. H(x) = 0 for Ix| > R. Then we

- 2 ) 2 -
have H e LY(Q)™ nL™ ()" with® div H e L9(Q)"nLF (9)".  Take
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s € (1, =) so that 1/s = 1/r + 1/n. Then we have also

2 - -
e LS()"  with divH e LS(2)", since s < r and since H has
a compact support. Now it follows from Lemma 2.1(i) that there

-t

- 2
exists G e Hi's(Q)n such that
(2.15) div G = div H in .
2
By the Sobolev inequality we have also G e Lr(Q)n . Set

- 2
V=F-H+G. Then VelL(®" and from (2.13)-(2.15) we
obtain that

div (T(u, p) + V) = 0 in the sense of distributions on Q,
(2.16)

(T(u, p) + V)-v|yo = 0 in w /T T a0)".

Let us define the function ; on R" by ﬁ(x) = u(x) for x € Q,

ﬁ(x) = 0 for x € Rn/Q. In the same way, we define also ; and

- - - - 2
\'4 on RM. Clearly u e Xg(Rn)} P € Lq(Rn) and V e Lr(Rn)n

Moreover, it holds
(2.17) div (T(u, p) + V) = 0

in the sense of distributions on R®. To see this, we take a
function n e C®(R") with 0 £ n 1 so that n(x) =0 near

Rn/Q, n(x) =1 for Ix| 2 R. By the generalized Stokes formula
(2.10) and (2.18), we have

(T(u, p) + V. V&)

R
= (T(u, p) + V, V("‘”)Q + (T(u, p) + V, 9(1 - n)O))Q
R

s - <(T(u. P) + V) .v|aQ' ‘blaQ) =0

16



for all ¢ e Co(RM)™. This implies (2.17).

- 2
On the other hand, since V ¢ Lr(Rn)n , 1t follows from

Lemma 2.4 that there is a pair {u’', p’'} with u’' € X;(Rn) and

p’' e Lr(Rn) satisfying div (T(u’', p') + V) = 0 in the sense of
distributions on R". Applying the theory of harmonic functions
for dW=u-u and P =p - p' with such an aid of inequality

as (2.8), we get as in Lemma 2.4 6 =u’ and p = p’'. From

2
this it follows that ©Vu e LF(9)" and p e LT(Q).
Now it remains to show that u e ﬁi,r(g)n in case r 2 n
(n 2 3), r > 2(n = 2) and in case 1 < q < n. For the Tormer

case, by (1.2), we get u ¢ Hi'r(Q)n. Suppose the latter case
1 <q<n and n’' <r <n (n23). By the Sobolev inequality, we

*
have u elL? (" for 1/q" = 1/q -1/n. Moreover it follows

from Corollary 2.2(ii) that there is a constant vector M e R"

such that u+MelLF (Q)n for 1/r* = 1/r - l/h. Since

* *
uel? (Q)n. we see M = 0 and hence u e LT (Q)n. Then again
by (1.1), we get u e Hi'r(Q)n. This completes the proof of

Lemma 2.5.. [ |
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3. Lq—gradient bounds for the Navier-Stokes equations; Proof
of Theorem A.

3.1. Let us first recall some fundamental facts for
interpolation couples. For closed subspace X of a Banach space

1
E we denote by X the annihilator of X, 1i.e., the set of all

continuous 1linear functionals on E vanishing on X. By
Corollary 2.2(i), we have
- _'_ -~ ’ *
(3.1) x3(@)7 = (f eH 1.9" ()M, ¢ = yp with p e LY (Q)}
for 1 < q < w»(q'= q/(1-q)). Moreover by Theorem 1, ig(g)ni;(g)

is dense in ig(g) and i;(Q)(1< q, r < o). Hence it follows

from Aronszajn-Gagliardo [2, Theorem 8.3] that
R . | R I - ]
q r = _ v9/0y" .oy
(3.2) (XO(Q)nXU(Q)) = XO(Q) + XU(Q) .

For Lq-gradient bounds of weak solutions of (N-S), we need the

following variational inequality.

LEMMA 3.1. Let u € Xg(Q) for. 1 < q < ». Suppose that

sup {1(Vu, Vo) I/NVell ; O » ¢ € c: D) < e
o, .

2
for some r > n'(=n/(n - 1)). Then it follows Vu e RN ) L ¢ {

in addition 1 < @ < n, we have also u € i;(Q).

Proof. Since Cg 0(Q) is dense in i;'(Q) and since

ig'(Q) is a closed subspace of ﬁi’r'(Q)n, it follows from the

assumption and the Hahn-Banach theorem that there 1is a

c-1,r

functional f e H (Q)n such that (Vu, 9¢) = <f, ¢> holds

for all $ e C: U(Q). Now by Proposition 1, C: d(Q) is dense

18




in ig’(Q)ni;'(Q) and therefore, from the above identity, we get

<-pa - f, v> = 0 for all v € ig'(g)ni;'(g). Then by (3.1) and

(3.2) there are functions P e Lq(Q) and P, € Lr(Q) such that

-Au + Vpl = f + sz in the sense of distributions on Q. Since
a-1,r n .
f «+ sz e H (Q) with r >n’, by Lemma 2.5 we get the

desired result. [ |

We next consider the complex interpolation space [X. Y]e )

0 £06s51. Note that the norms NVqu and IIVuIIr are

consistent on C:(Q) and that the pair {ﬁi’q(Q). ﬁi'r(Q)} is

an interbolation couple. Moreover from (1.1-2), we get the
following concrete characterization(see, e.g., Triebel [25,
1.91): ’

If 1 <q<n, l<r<n orif ns§q< oo, nsr < o,
~1,q o B o _ 41,8
[Ho (R), Hy (9)]e = Iy (),
where 1/s = (1 - 8)/q + 8/r, 0S68<s51. Applying duality
argument(25, 1.11.2], we get

(3.3) (H 1), ﬁ'l'r<a)]e - 118

for n’ < q < o, n’ <r < o, where 1/s = (1 - B8)/q + B8/r,

0506 s1.

3.2. Completion of the Proof of Theorem A.

(1)Associated Pressure. Since u e ii(g), we get - Au - T

€ H_l'z(Q)n. By the Sobolev inequality we have the continuous

embeddings  HL 2 (g),  ELMZ(g)al(e),  so 1t

follows from the Hglder inequality that
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2
1{(u-%u, ¥)t 3 "“"2n/(n-z)"V“"2"°"n 3 ClquIIzllV'Ulln/2

for all (= ﬁi.n/Z(Q)n with C independent of u and ¥.

This implies that u-Vu e H 1.n/(n-2) gyn

and hence we get

(3.4)  -fu + u-tu - £ e L2 o gL/ (0-2) (g0
On the other hand, by Proposition 1, (od (Q) is dense in

°n/2

).(ﬁ(Q)nX0 (). Now by (3.4) and the definiton of the weak

solution of (N-S), we get -Au + u-%u - f e (iz(g)nig/z

(9))l.
Then 1t follows from (3.1) and (3.2) that there exist scalar
functions P, € LZ(Q) and P, € Ln/(n-2)(g) such that
-6 + u-Vu - f = -Vpl - sz , which means that

(Yu, VW) + (u-Vu, ¥) - (xzol +p, . div ¢) = <f, >

for all v e C:(Q)n. Now we see that P *+P, € LZ(Q) +

Ln/(n_z)(Q) is the pressure associated with u.

(2) More Regularity. (i) "Since n = 3, we have by (3.4)

that u-Vu e H %*3

(Q)3 and hence from the assumption on f with

the aid of (3.3) it follows that u-vu - £ € H '3 (2)3. Now
3 32 .
applying Lemma 3.1, we get Qu e LY(Q)" . By interpolation,

2
u e Lr(Q)3 for 2 Sr S3. Since ue LG(Q)a, it follows

from. Corollary 2.2(ii) that u e LS(Q)3 for all s with 6 S s <
®, Since 2q 2 6, we obtain by integration by parts and the

HSlder inequality I(u-Qu, )1 = 1(u-9¢, )l s uuugquvwn for
ql

a1l @ e C®(2)3. which implies that wu-vu e H1'%(9)3. By
(]
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assumption u-%u - f e ﬁ'l'q(Q)3 and Lemma 3.1 yields., together

‘a2 v
with interpolation, Yu e Lr(Q)a for 2 8Sr saq. Now
-Au + u-Vu - £ belongs to ﬁ_l'q(Q)3 and vanishes on C: 0(Q).
By Remark 2.3 the pressure p assoclated with u can .be chosen

in the class that p e L9(Q).
Suppose 1n particular that q > 3. By interpolation we have

u e ig(Q)an(Q)s for 3 < q < 8. Then we have u e L®(Q)3

because it holds

(3.5) neit, s cnven®ueng™® for a11 ¢ e x3@nb()3,

q
where o = 5/3(a - 2). Indeed, from Gaglidrdo—Nirenberg
inequality(see, e.g., Friedman [8, p.24 Theorem 9.4]), we see

that (3.5) holds for all ¢ e C: 0(Q). Now since CZ 0(Q) is

dense in ig(Q)an(Q)s(by Proposition 2), we get (3.5) by passage

to the limit.

(ii) By (3.3) and the assumption on f, we see as in case
1,n/(n-2)(g)n.

(1) that u*VYu - f e H It follows from Lemma 3.1

and interpolation that Vu e Lr(Q)nz. for n/{n - 2) S r s 2.
Since u eszn/(n-z)(Q)n, we have by Corollary 2.2(ii) that u e
LY ()" for n/(n - 3) Sy S 2n/(n - 2), which yields u-Vu e
A1) for n/2(n - 3) S 6 Sn/(n - 2). Since n/2(n - 3) S
n" <qsn/(n - 2), we have 1in particular u-%u e ﬁ—l'q(Q)n.

Then 1in the same way as above we have by Lemma 3.1 and Remark

2
2.3 that W e LY" and p e LYUQ). Now, the assertion
follows from interpolation and Corollary 2.2(ii). This completes
the proof. 1
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4. Uniqueness for the weak solutions of the stationary
Navier-Stokes equations; proof of Theorem B.

As we have seen in the proof of Theorem A(l), it holds
1(u-Vu, ¢)1 S CHVuH%HQHn for all ¢ e Cz d(Q). By Proposition 2,
Cc (Q) is dense in XO(Q)nLn(Q)n and hence by passage to the

1limit we can insert Vv e iﬁ(Q)nLn(Q)n as a test function ¢ in

the definition of weak solution of (N-S). Since (veQv, Vv) = 0,

we obtain

(4.1) (Vu, 9v) + (u-vu, v) = <f, v>,

(4.2) woviz = <t, v>.

Moreover, we have by the HSlder and the Sobolev inequalities that
I(veUv, &)1 S uanHVvH2H¢H2n/(n_2) s CIIanIIVvIIZIIVOII2

o o o2
for all ¢ € Co,o(Q)' By Theorem 1, CO.G(Q) is dense in XO(Q)

and hence from the above inequality we can insert u € Xﬁ(Q) as

a test function defining the weak solution V e iz(g)nLn(Q)n:

(4.3) (Vv, Qu) + (v-Vv, u) = <f, u>.

Adding (4.1-3) and (E.I.), we get by integration by parts

Yu - Vvu§ < (u-Tu, v) + (v-v, u) = (u-%u, v) - (v-%u, V)

= ((u - v)-U(u - v), v).

22



Here we used ((u - v)-9v, v) = 0. Letting w =u - v and then
using the Hglder inequality and the Sobolev inequality

ol s C, i, (v e HL'%(Q)), we have from above

2n/(n-2)
2 2
IleIl2 s "w"2n/(n-2)"vw"2"v"n s C'HVWHzﬂan.

1

Take 0 < A< C: Then under the assumption that Han S A, we

conclude Hang S 0, which implies u =v on Q. This completes

the proof. 1
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Decaying Rate of Fundamental Solutios

for a Linear Volterra Diffusion Equations

MAsATO [IDA

DEPARTMENT OF MATHEMATICS, OSAKA UNIVERSITY

Let Q be a bounded domain in R¥ with smooth boundary 8. We consider a

linear Volterra integrodifferential equation in LP(?) with 1 < p< 0o

(1) %(t)+/1v(t) - /o ‘ot —s(s)ds,  t>0.

In this article we will construct a fundamental solution I}(t) of (1), derive a
uniform LP-estimate of /}(t) with respect to p (§1), and apply the results to a class

of semilinear Volterra diflusion equations treated in [3] (§2).

§1. Main resuits

Notation and hypotheses. We denote by ||| - ||], the operator norm of the
bounded linear operators on LP(Q?). For 0 < v < § and R > 0, we define a sector

excluding a neighborhood of the origin by
S,p={z€C; || >R, |argz| < %+7}.

For a measurable function g(t) on [0, 00), §(2) is an analytic continuation of its Laplace

transform [;° e~*'g(t) dt, and D, is a maximal region in which g(2) is a single-valued




and holomorphic function. The resolvent set and the spectrum of a linear operator

A is denoted by p(A) and o(A) respectively.

Impose the following conditions on A and ¢ :
% (/74) A lincar operator A in LP(Q) is defined by

D(A) = {u € W(Q) ; r(z)u + {1 - r(a:)}%;i =0on 39} )
Au = —Au+ q(z)u for u € D(A),

where g(z) € C°(f) is a real-valued function and the function r(z) € C®(aN)

satislies either
(@) r(z)=10ndQ or (b) 0<r(z) <1 ondN.

() (i) g € L'(0,0).
(ii) There exist M, > 0 and 0 < 7 < ¥ such that

{ Sy,r C Dy,
(@) B <M forze€Syn.

It is well known that the operator A has the following properties :

Lemma 1.1.  Under the assumption (H,), —A generates an analytic semigroup
e~ on L?(0). Moreover, for some constants M,R > 0 and 0 < v < § which are

independent of p,

- M
3) lII(= + A) ll""SITI’ z€SyR, 1<p<oo




holds (see, e.g., [5; Chap. 17]).

Lemma 1.2. Under the assnption ’([IA )2 the operator A is self-adjoint and
bounded from below in L?(), the spectrum o(A) is discrete, and a faimily ¢; €
C°(§}) (j = 1,2,3,---) of the corresponding eigenfunctions forms a complete or-

thonormal system in L*(Q).

Fundamental solutions. Let {/2(t)}i>0 be a strongly continuous one parameter

family of bounded linear operators on LP(f2) and satisfy
¢ s ' A
(4) Rit)y=e"*4 + / e'("’)"/ g(s — r)R(r)drds, t>0.
(] 0

Then we call {/2(t)}i>0 a fundamental solution of (1).
Theorem 1.3.  If (H,) and (H,) are satisfied, the unique fundamental solution
R(t) of (1) is explicitly given by -

(5) R(t) = ;2-% /r (24 A—§(z) " dz, t>0.

HereT is a path running in some region S, p from ooe~% to coe® with F<0<3+y.

Idea of the proof. Take the Laplace transformation for (4) and (5). This
formal calculation is justified by
{ (z+A=-g) " = @+ AU =5+ A7)
(= + A -3, < ¥

for z € Syp, 1 <p< o0,

with some constants M', R and v independent of p. It is easy to see (6) from (2) and

(3). (cf. 1}, [4; Theorem 5.4], [7]. ) &



Setting P(z) = (z + A — §(z))~", we introduce the following sets :

ro(A,g) = {z € Dy ; P(2) is a bounded lincar opcrator on LP(f2))
= {2 € Dy ; —z+3(z) € p(A)},
p(A,9) = po(A,g)U{z € C; z is an isolated removable singularity of P(-}},

o(A,9) = C\p(A,g).

We call 0(A, g) the retarded spectrum associated with (1). An ana.lyt.fc extension of
P(z) on p(A, g) is said to be the retarded resolvent (cf. [2]). The next lemma is an
essential part of our idea. It is derived from Lemma 1.2 and an L2-L” estimate for

et

Lemma 1.4.  Impose (Hs) and (Hy)-(i). Let K C po(A,g) be a compact set.
Then

(M) sup{||IP(2)lll,; 2 € K, 2 < p < 00} < o0. v

For the proof, see {4; Lemma 5.5].
Setting

Apg= sup Rel,
A€a(A,g)

we obtain the decaying rate of R(t) with respect to L™-topology :

Theorem 1.5.  Assume (Hy) and (H,). For a given positive number ¢, the

fundamental solution R(t) is evaluated like

(8 MR, < CePasted, 2<p<oo, t 20,



where C is a positive constant independent of p and t. In particular, the incquality
9 IRl < CePastedt >0

holds true.

Idea of the proof. Since P(z) is analytic on p(A, g), we have only to replace I'
properly in (5). The argument is justified by the uniform estimates (6) and (7). (See
[4; Theorem 5.6]. ) &

§2. Application to semilinear Volterra diffusion equtions

As an example of the results of §1, we consider the asymptotic stability of the

positive equilibrium ue, for a semilinear delay model in population dynamics :

28 — Au+(a—bu—fru)u, >0, z €,
(10){ 3£ =0, t>0, z€dn,
(0, z) = uo(z) 20(#0), z €N,

where a and b are positive constants, f * u denotes the convolution

t
[ ru(t,z) = ./o J(t = s)u(s,z)ds,

and ug is an appropriate smooth function. The positive function f (t) which we keep

in mind is the type of

)y f)= %e"" (T>0,a>0)
or(12) f(t) = %te"" (T>0,0<a<8b)

ap(w? + %) _p

or (13) f(t)= e +wpe (14sinwt) (a>0,0<w<p)

390




(for the biological meaning of (11) and (12), see, e.g., [3], [4]). In these cases u(t,-)

converges o o = pio as { — oo (see, e.g., [4], [6]). Replacing u — ugo by v in

(10), the usual linearization procedure leads us to (1) with q(z) = bueo, r(z) =0 and

9(t) = ~ucof(t). We can obtain the following theorem from the results of §1 and [6]

Theorem 2.1.  Let the delay kernel f be the type of (11) or (. 12) or (13). Then
the corresponding constant A4 4 is negative and the solution u(t,z) of (10) converges

like
(14) lu(ts ) ~ tollog = O (Pate) a5t s oo,
Here ¢ is any number satislying Mg <Apg+e<.

Idea of the proof.  Put v(t) = u(t + 7, ) — e for sufficiently large number .

Then we can reduce (10) to
5 { Bt + Av(t) = [Jg(t — s)u(s)ds + ha[u](t) + ha(t), >0,
v(0) = u(r,-) — tgq,
where hy[v] and hy are given by
hlol(t) = —o(t) { bolt) + A ' (¢ = s)u(s) ds }
ha(t) = u(t + 7,°) {u°° /‘af(s) ds — /o J(t+7 = s)u(s, ) ds } .
Since

v(t) = R(t)v(0) + /o t R(t — s){h1[v](s) + ha(s)}ds, >0,

we can get Lo (14) by virtue of (9) and Theorem 3.2 in [6]. The negativity of Arg is
deduced from the fact that A € o(A, g) if and only if —X + §()) is an eigenvalue of A
or A is a pole of §(-). (See [4; Theorem 2.5]. ) &
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S5HRPYMEMICH T 5 HEROPROFEIS >V T
YIEIR A
MAXKFEHRMETRRAH

§1. INTRODUCTION

KOL> HRPWMELEEL S,
1.1 Fmﬂﬁmm+m—ﬂwm—ﬂ=0 in
(1.1). v =0 o 09

BL.e>0. QR RY o RFBKEL. fLg R QCERSAEFANKET S, CO
HRERNEH5MBBBOMEE O value funclion 253 7: 4. Bellman 5ERELTHS A TW
3 ([8]). ZROBEMNIR. e >0 &Lt &i, u BROSFEXON 1o LM F 5 rale
ERDBBCELTH S,

(1.1) { max{uo — f,|Dug| —g} =0 in Q

u =0 on 90N
COLIRPHMEODVWTRBERC OV OIOEREMNIEN, Tholkh T o lHELHE
ELBELTWS (B2, [11] 28M) . < TN ( viscosily solution ) @
ERERORREGCMUTLIOMMEEANMNOFMERD B LT 5, o idea (3
M eRycELSh, [7) Cld v, ED b DI obstacle 2 LAIPAEMEF 2 X 5 14k
WHIFRbhTWS, ‘

§2. THE NOTION OF VISCOSITY SOLUTIONS

BUBOBSEMBRCRAT LD, KOLIR I BEUSSEROBRENEL 2
A5, 2HOBETHLAMIBL TS 3 (HIcRERS) .
{—g-Du+u—f=0 in Q,

(2.1) u=0 on 0N

BL. Qe RN Rt IBR 00 2B HRMET. 9: Qo RY [ Qo R 43,
COHBEROMERHIH AR

) 20  sta o,
‘2(0) = zp € Q
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OREMOTRBATBEILEERLS.
¥ .ut (2) ohumeET s,

L (et ue(®) = (g Du=u)

THeho. WA%E [0,T) CHATE L.

T T
[) gt-(e"u(z(t)))dt = /o e~ (g Du—u)dt
&2 T r
(AT~ ulza) = - [ (@)

283, cce.T %
T=inf{t> Oz(t) €00}  (=(t) 4 00 HBT 5EM)
rtEE. MARELY
T
(2.3) u(zo) = / et f(z(1))dt
(1]

&5,

—aic (21) TR QO RBTOEHUMREELEVOT, COMBIRMIL L E WA, (2.3)
TERENE v BROBKT (2.1) © weak solution &1 > TW3,

w€C(Q) . peCHN) &L, u—p 2o €N THRAMELBETE. ¢ KEHEM
ABIEREST,

u(z0) = p(z0), u(z) Sp(z) inQ

ELT&W,

1>0&%5. z(t+38) i s=07Tz(t) 2MME LT3 (22) OREHLS (23) &1

T-t

u(z(t) = / e~ f(2(s +1))ds
T
=[ e""f(z(s))ds.

T
e~ tu(z(t)) =/‘ e’ f(z(s))ds.
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(2.3) 2fli-T .
e~ tu(z(t)) — u(zo) = —/0 e~* f(z(s))da.

(LT, u BWATIEL S, W% L TH-TL—0 &FhiL, (2.1) B35 h3,)
LoaT. '

e~ u(a(t)) — u(=o) < ~*p((t)) ~ plzo)
= [ (e ptatonas
= [ 1o Dipte(e) - pleten)as
ERBZDOT,. CO2HXEEGLETHONILAGEROBmAEt CH-T. -0 &+ hif.
-9 Dyp(2o) + p(20) — f(z0) < 0

BESH S,
BB LT, u—p Mz TRAMHELZELT,

=g Dy(zo) + p(20) — f(z0) 2 0

REBSNh 3B,
ET. MUROERESLE DI, KO L35 GRIL) EBRF MMM IRA %
5.

(2.4) F(z,u,Du,D*w)=0 in Q

ZCT. FeC(@x Rx RN x SN) 5 (iB{t) WHMTH2L12. F&D (z,r,p, X) €
OxRxRY xSV . YeSN txdLTY MEERMI ST

F(::,r,p,X+Y) S F(z,r,p,X)

BEDI-E&%20wS, BL, SN B NxN RHBTALKERDT.

ER.

ueC(N) &4 3.
(i) u 25 (24) ORE sub WTH 3L . FRO PEC}(N) KHLT, u—p H2zo€EN T
BAEEEBROH.,

F(z0, u(zo), Dp(zo), D*¢(z0)) < 0
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BRI EEEWS,
(i) u 2% (2.4) O45#k super RTH 3L, EBDO e € CHA) KL T, u—p M 20€Q
TH/NIEEBERSHE,

F(zo, u(z0), Dyp(z0), Dz‘P(zO)) 20

BKOIL>EEE WS,
(i) w »5 (2.4) ORHERTH 5 L 12, Hh5Hk sub & super B L & 2 3,

(i) Fos1 o & &, PpeEC'(M) LT, LEEROEREE RS,
(i) ups (24) OHIUMTH B E &, UMD, EB, TRO o€ CH(Q) KHLT u—9p
Hzo€EQ TEABMEN- L ET L,

D(u(zo) — p(z0)) =0, D?*(u(zo) — ¢(20)) : nonposilive definite
THEHh S, HIFYOFERLD
F(zo, u(z0), Dyp(20), D*¢(20)) < F(zo, u(z0), Du(zo), D*u(z0)) =0

EBD, WM sub RIS B ENDM S, Kt super BRIt 32 & bRAIBILREN S,
(iii) (24) OB u H C? S, uid (24) 2BATHET L RERICDM S,
(iv) ELwE#, HMie>vwTit 1], [3]. [d). [9). [10] BT, £h 5D References %
BMoC &,

§3. MAIN RESULT

KRoOREZBS.

(A1) Qi BRY oA RAKTHARBS H
(A.2) feWLo(Q) b f>0 on
(A3) geWL(Q) »> g2?8>0 on

chooREOLET[5). [10) OB EMS> &, MAKRGEHRLT (1.1) RU (1.1)g
OHEMR u,s vo P—BMICFEL, e>0 cmMERER C ity

(3.1) 0<u,u<C on f}
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s, #h [ REAHINERYT vy VMBTHD, Lbb g BHRTHEC L
&0 {u}eso REEEY 7 v » VMRTHE. COL &, KOTMMEY >,

ERL. v
(A1)-(A3) REREL. ue. uo 2BEAHREMHEEHLT (L), (L)oo ilME T 5.
CDEE, >0 e >0 NEELT, ROFBEMNKDIL-.

lue —uol| S e forall €€ (0,e)
L. |l-ll 1 C() ¢ sup norm T& 3.
KoPcL D, COMNEIL best THBEEMbh B,

WM. N=1,0=(-11), f(z)=1=|z|. g=1onQ &+ 5. cots. (L), (1L1)o
OHERBXOL > CHI 5,
__sinh((|z] = 1)/¢)
u(z) =¢ cosh(1/¢)
uo(z) =1 - |z|.

+1—-|.‘B|,

+5¢, tanhz <1 ;o tanhz =1 (z—o00) THBEE XD
llu, — uoj| = |ue(0) — up(0)] = etanh(l/e) <e as €—0

NFohs,
ERoDIER:
u, —up < pe on  ERT. eo=0/3K,K ({BL. K ( resp. K) 4 u,\uo(resp q)
DY Ty vERETSE) LBE, c€(0,60) LT, ’

— yl2 - _
& = pue(e) ~uale) = T _pe  on Qxr

EERYT B, L. p=1-3K,Kef20 L L. p> 0B SRBIERET S, (£,§) €
OxQ % &,(2,y) ORKEEMBALTE &, d’(zz)<<I>(z,y))_-u00)')7"/w vl

53 W
1z -§°
[
ey |-y < Ke bz
Dz, eV oLk

< uo(Z) —uo(¥) < K|z - §|
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MK ®.(x,§)/p 13 2 CRAMEMZOT, u, 2R SUbMEH B LROLFNEHS.
2N 2
(3.2) max{——c¢ + u(2) — f(£), —|z — 5| — 9(2)} <0
P pE
FHic., MK —3(F,y) 12 § CR/MEEINS 0T, uo %Mtk super BE S T,
2
3.3) max{uo(§) - f(9), 12 - 9l - 9(9)} 2 0

85,
ceT. (833 eBLWT 2E—-l/e—g(F) <0 EMBLEFS. ES>TRVERET
hid, 3.2) T 22 —gllpe—9(E) <0 THBI L LY

™

9(9) < =|2 - 9l £ pg()

tis, +5&. (A3 & |2 < Kekfli-T
(1-p)0 < (1 - p)a(y) < p(g(Z) — 9(§) < K,l2 - 9] < K Ke

NEBoNE, LCAN, pOERLY 3/2<1 LD, ThRFETHS., £-T
Az —jlle—g(H) <O BBRL3B. #-7T, (33 LBLT

uo(§) — f(¥) 2 0

nBsh. (3.2) &b
—%wu.(i)—f(f) <0

EP D2 ODRERE (A2 2E-THHTEE. p>0 E+AKECMBI LK
£

ue(Z) — uo(§) < pe

tis. +5&, B(r,z) <P(2,5) <0onQ H@oH, {u}so O—HERBLOAD
Tu>0EKRESMYETE u,—upSpeonl @B,

(N)ZorgedN o &

u, =up=00nd h s, ché& (3.1). {u}eyo PRIEEY ¥ » VBBRUEMES
EBRTHB.

M) X0 p>0 2HickE<BE, u,—upg<peon HFS>h 5.
g~ SpeonQiEOVWTHEBRTH 3.
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— RN KEor 2 b v {Elo compensated
compactness REBSMOTFERODWVT

o 9E % ¥
HEKE HRAHE

§0. R

RN MANAKONMELO—RETOMBITENIE, P5M(1968), um
~Smoller(1978), L1u(1977) i &tk 0\ £ ¥ {1 O WM OTELEMR &
hy BhiRedVWHN@ERMNG LM (1968), §M—Smoller(1977),
L1u(1977,1978) n ¥k s 9 Mhn, Tholdwyhb Lagrange BEIFRI
BwT, Wbhws Glinmm o#JLEIEIZdOTYNEME

(Y-1)x (DM@ O 2TT)

MERQRED, EVS GO ETHRMANE,

DiPerna(1983(31)i3 Tartar » M}lrat sitd s compensated

compactness DKk MWwWT. —ROF R % &3 5 90 6 S %
2 79 11

r= 21‘+1+1= 557, 9 yvoae (Tzziﬁﬂl)
Ob L, Buler R BVWTMWE, £, Ding; Chen, Luo 54, &5
1<7s§

OPAOHEREToTWS ([11,12]),
cceid, DiPerna ammmm&m&a:;nm\ DiPerna :RBEOSKH
DD LTCOSBROYMMHARAMUE (X b vE) OWROTFHLERT,

§1. E® (c.f. [51)
AR MEMB O (p(x, L), ,m(x,L)) (p(x,t)20 a.e.)

M, Buler BB BIHMENMAKONMELO—RETORHSHTERA
pt+m==0,

m,+ [g;+P(p)]z=0,

(P k@, m=pu: WHA, u: WP, P(p)= %P’:BEjJ\

2 . .
7'21+1+1 TWisiEE. T2l BHK)

o, (a) 1-ex b vygm:

Di={(x,t): t>0, x>x,(t)] -CoOHWMARMNMMA
[( p(x,0),u(x,0) ) = ( pu(x),uy(x) ) (x>0),

plx (t),t){ u(x (t),t) - u(t) } =0 (t>0),
 OFEMTHS L, MO PeCy=Cl(RxR,) | RU x=x,(t) k O ri3{ER
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O PeC) nL
‘” (pgo‘nn(o Jdxdt + Ipo(x)¢(x 0)dx = O,

IID lm¢‘ [ +P(P)]¢ ]d‘xdt + Im (%)¢(x,0)dx = O,

(po(x) Up (%), U (L) BEXSNITRAMZMBT, py(x)20,
et
My (x) =py(X)Ug(x), 2,(L)= Ioul(s)ds )

W TL,
Mgl LT, (D)2-¥x b ME:

D,={(x,t): t>0, X (L)<x<x, (L)) T o) 0T 4T 0 0 I
( p(x,0),u(x,0) ) = ( py(x),uy(x) ) (O<x<L),

P (L), ) {u(x, (t),t)-u (t)) = 0 (t>0, j=1,2),

(Po(X) o () 2, (1), u,(t) WEXBRATRAMENY T,
t

Po(Z)20, my(x)=py(x)ug(x), %,(t)= fou,(s)ds.

x,(t)= L + j;u,(s)ds, L>0: 2 H)

OUMbEREIL S,
EFRV2-E2 P HMBI(DIRBVWTR, P2 v OEBRENLTROPAL S
2%, '
(C1) U (D)S(HBEH)ISU, (L),
(C2) X,(l)-x, (L)26(t)y (6(Lt)>0, t>0 ).
(Hohiz, (C2)oliMnED—-BOBATH S, )
smooth MMM (MW),qW)) (U="(p,m)) #t entropy palr
THH LR HERN
t mz
U +F(U) =0 (F(U)~= [m,p—+P])
@ smooth solutlon &L T
nW) ,+q(U) =0
Ayl thbb,
(i}

grad q(U) = grad n(U)-.grad F(U) (grad-[a-; Om])

BELTE (nU)ik entropy, qU)i3 sntropy flux :®iXhs) ,

¥z, entropy n(U) # weak v55:ik.n % (p,u) OMBEAT
0, w)=[n(p,1)],0 =0 ( u=p) 4

My liEvd, DToRBRCoHHER entropy i, Darboux o2 :

n = I {(w-s) (2-5) )} p(s)ds
s 1 )
o 1
- (& epI {y(l—y)}'(o[%+3%1-p°]dy

_m mle g y-1 |
( mp+ep, 2 pep , O 7 @(s) X smooth MM )

cHhXonh % smooth weak entropy ¢4 3%,
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2. GUROME
oL, Lax, gimsk X 3koRMMRY Lo (41, (51),
prL B
ek U =0 o,
(1) {(x,t): t>0, xeR) wHY 3PMEAMNE (Rlemann WE L FiXh3)
U (x<0),
U(x,0)=|
(x>0) (U!lu,. ‘#ENy ")l/) ’
() {(x,t): t>0, x>at) ( a WEHM ) B35 PSR @M
Uz,0)=U_ (x>0),
ptat,t){u(at,t)-a}=0 (t>0) U, BE=Z 1 ),

(m) {(x,t): t>0, x<at} (e BEH ) BT 3NMANR@NE
U(x,0)=U, (x<0),

plat,t){u(at,t)-a}=0 (t>0) U, BE=21tnr ),
i, SEMRME. ik ( snooth solutlon ) | #MY (RARBA SIS
weak solutlon ) ei&h 3, RoMc@Eis veak solution %o,

COEMEM, B x=2,(L) %ll‘rnﬁ'cﬂlub MHERFICLBIENE L
rmatlmarmwabaunmm U(x,t) 2MRTES. CS5LTHMMER
B ERMIc >V TROMEMNEKD LD,

HE2 Gifio—KRTARHE)

Ea VM (a),(b) oiEpm Utcx,t) @, (b) kswTir (Cl), &
=ik (C2) ode, T8O (x,t) TEMRTET, LB T>0 kL,

pl(x,t)=0 uoir mi(x,t)=0 ,
0 g p‘(:z:,t) s C,(), { O<t<T )
lut(x,t)1 < C,(T), ,
4 m(x,t)
[ u (2, t) = p_z__(x,t) ]
EMiY, e C(T) &, (a), 8V (Cl) odeTo (b) RHLTH
T RIRTFLBEVWEMRE EHh, (C2) odbeTo (b) L.sr-lb'cca
D%, CuD s Ceoxp((A-B [Tz ),
( A\ B i3 A=ess.sup,u,(t), B=ess.lnf‘uz(t)'c‘
A>B, ¥ bbb, (Cl) 2Hldhwvwe i, )
E¢R@Eh B,

Q3 (avsxs i)

@2 oU*(x,t), Rt Darboux OARX THiA5h? smooth (weak)
entropy pair iexL<T

n(vt(x, t)]t+q[U‘('x t)),
€ 5% Hl“(Q) o compact set (4 k&bf;\,\)
riBz i, {£80 bounded open set Q EHLTWR S,
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§ 3. compensated compactness
ROL-oDEMIE Tartar 5k &5 (061),

M4 (Young measure)
K : bounded set In R", Q : open set in R™

v”:n——.n" (n=1,2,...) M v, (x)eK a.e. xed
2METROE
(Pn)ner,e, oss38aN (v, }, 1,2,... » RU® 3 probabllity

measure (on P DOBE v (), . weo MEELTHREMET,

ssupp y, < K.
Ry EMBUHB GY) RHLT
G(xy=<v (¥), G(y)>=_[ G(y)v(dy) © x-ame.
G(v, (x))—G (x) in L" (9) weaks
({v,) % {v":} wMY3 Young measurelmsr)
EMG (div-curl lemma)
92 : bounded open set In R, V,.0,0,,0 € L-(.{);R") M.
v,—/v, v,—w in L (9) wéaks,

div v, curl w, e 53 H;) (2) o compact set

(n IKEohzw)
Mt o, (v}, (v,) oszmam (v, } {w, } MboT,

v, 0, — v-w in L™ (@) veaks
;N
C '~ & R" o,
: dxy Ox¢
curl [u,,uzs---'un]'[a?t - Oxj]lsklsﬂ )

&%,

$4. GEUMONHK

S2THILREBME. (a), 228 (C1) Db2TO (B) RHLTHAM
2REDV—RERTHINE, BYRBARN U! (x,t) 2Btk dD, 554
5 7 B 2%

i}(x,t)"ttﬁ(x:t) n';(xlt))
NdoT

U" (x,t)y — l_}(:\c,t) in L” weaks
Ty Mo (BM4i1&9) 35 probabillty measure D K
{”tz.c)(u)}(x.u
Nd-T\ FROBR LMY GU) kHLT
G( U (x,t) ) — <, (W),GW> in L" weake
EFBIEMTEDS, VE, (X,1) LVISHUTMRITHL,
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div (q,n) = n,+q,,
curl(-n,q) = n,+q,
eH»5ho, Darboux oXcHELe6h % smooth ¥ entropy palr
(M41,8,) 5 (N3:9y)
it%t L, commutative relatlion:
<Y, Nq~1,Qp>=<V , N><Y, @ >=<V, N ><V, @,> a.e. (x,t)
MEVILo, COMEN, RU Darboux oaAXTELGNBEH D entropy
palr 252 ¢lk&a<T

(U =6 ()

(2 t)y e, t)

(= 1& l_J(x,t) % support K-> 6-measure )
THBCLEBUENES, thicRRoEMEMNS (LR [11,02)),
§Eme ( Lebesgue derivatlive )
¢ : nonnegative Radon measure ( on an open set QcR® Y,
m : N %5 Lebesgue measure k3L <T

lim infu(B (%)
Du(x)= ri0 "TPW} =0 a.e. u

e u=0 .
( B(x): vhis =, ¥& r o N RuMK, Du(x) %
Lebssgue lower derivative :Wi )

EoTLGW) % p,p°,m,m® RELIhUEMAKEY
4'__' ", 4a'\2 — (-)z .
pd' f [p"]z ,_J 2 in L weak»
m* — m, (m ] — (m)

Eub, pym g bounded THEME. MR AARBAN (V') . ko<

”

v — U a.e.
rTE’,
co U MO, WhWBLy hul—RURRATCLOABRRENS:

n[l_](x,t)]‘ + q[l-J'(:»:,t.)]:e <0 ( distribution sense )

%,
n : smooth weak convex entropy,

q(0,u)=[q(p,w)] o = 0
%#Mr¥ smooth entropy palr (7,9) kML, D, OMMTHLY (K,

EJ RN
ny = lout +

lz*\lbf\\ib) °

'4

‘ i,...8 Ty
qresul SO

r-1
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(C2) obiTo (b) ORAL, L:RARTMARE (NNBREKILELY) F5¢
ENTES, o TROTFHEEHMVE S,

EM7 (imotEe)

E2rvH@ (a),(b) kML ((b) kKowTik (Cl) ik (C2) o
&) S URAMEEM

Uty = ( pex,t),m(x,t) )
MIFZEL
m(x,t)=0 a.e. on {(x,t):0<t<T, p(x,t)=0 ),
0 < p(x,t) < C(T) a.e. on {(x,t):0<t<T) ,
lg(x,t)l < C,(T) a.e. on [(x,t):0<t<T, p(x,t)>0 ),

= m(x,t) .
['u.(x,t) - S €Ty .CT) zmmzemw]

Rz v roE—R#EEMNEY, COWUNMBS 2 MM L AEUND., » 3 8845 5|
O a.e. NK@MLELTHONE,
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The correspondence between a linear semigroup and a nonlinear semigroup

MARIKO ARISAWA

Ochanomizu University

We are concerned with a possibly nonlinear semigroup {T'()}, a one-parameter family
of continuous operators on a Banach space X into X. Instead ol Lhe concept of the dual
semigroup and the dual Banach space, we deline a linear semigroup {T(¢)®} on a certain
continuous function space. If {T'(t)} is not a linear semigroup, we can no longer define

the dual semigroup. Thus our new semigroup provides us with a new means ol analysing

nonlinear semigroup. By a semigroup we mean a one parameter semigroup

denoting {T(1)}, of possibly nonlinear operators from X to itself, satislying
(1) T'(t) is a Lipshitz continuous operator from X to X for every ¢ > 0, i.e.
Ir(t)s — T()yll < e(t)li= — vll,
where ¢(t) is o continuous function in ¢ > 0.

(2) T(t + 3) = T()T(s), T(0) = I

Let us denote by A the infinitesmal gencrator of {T(¢)].




Let C(1) be the set of all continuous functions on ¥, which is a Banach space equipped
willi the norm

I/ llcqry = sup |/ (w)]-
ey

The following A(1) is necessary for the strong continuity of T(¢)®

DeEINrrioN. The subset Y of X is said to be invariant for a semigroup {T(t)} , if T(t)Y C
Y for every £ > 0.

A(1) A semigroup {T(¢)} which is a Cg-semigroup has the positively invariant compact
subset i’ of X.

1. Corresponding linear semigroup

We restrict the operation of I'(t) to a compact invariant subset, show the corresponding
lincar semigroup 1'(¢)® has the strong continuity. Thereby T(t)® holds some good property
from the linear semigroup theory.

‘I'HEOREM 1. Suppose a semigroup {I'(t)} satisfies A(1). Then there is a corresponding
lincar semigroup {T(t)®} on C(K) as follows,

T(t)®f(z) = f(T(t)c) t>o0. (1)

The linear semigroup {T'(t)®) is contractive, strongly continous for t > 0.

THEOREM 2.. If [ is a Frechet diferentiable function on'Y and belongs to the domain of

A, then
Al(x) = (42, /(=) (2)

EXAMPLE 1.. Suppose T(t) is a group representing parallel transformation in X, ie
T(t)x = x +ta fort € R, where a is a constant element in X. Then for f € Cc(X),

1()8f(z) = f(z + ta).
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Ex;wwu:. Suppose X = R, and !'o_; g € C(R) Az = g(z). We consider the equation,
dz

T'hen if the solution is represented by a sémigmup I(t), IT'(t) satisfies

(1) 1 T'(1)e 1
[ e [
20 g(z ) zo g(z')

proof Il {T'(t)} exists, also does {T'(¢t)®}. Let us solve
‘ & _ s
= Af = f'(z)A=.
We use the separation of variables, and pose f(t, ) = &(t)¥(2). Then applying ( 2 ),

() ) _
g =30 =°

where ¢ is a constant. Therefore we have
X
®(t) = &(0)ezxp(ct), ¥(z)= exp(/ ——f—,— dz')
' xo0 g(:L’ )
‘I'herefore the operation of T'(t)® is

T(4)® : @(O)ca:p(/: g(j:’) dz') = ®(0)exp(ct + /l 2@ dz'),

c
z!)
T(‘)Z 1 X 1
—da:':t-i-/ ——ds'.
/,., 9(=") 0 9

and we obtain,

Mext we construct the corresponding lincar semigroup on C(X). However

in this case {2°(¢)®) will not be a Cy-semigroup, except the very special case, if we equip
I Ncexy norm to C(X). {T(t)®} will be a lincar semigroup on the locally convex topo-
logical vector space C(.Y). The content of this paragraph is based on the equi-continuous
semigroup theory [see 2]. We shall assume that we are in the following situation.

S(1) Tel a semigroup {T(1)} have a funily K of positively invariant compact subsets K;

which satisflies
X = UgexK.
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Tue ToroLocy ofF C(x). Suppose a semigroup {1'(t)} satisfies S(1). Then C(X)isa
locally convex space equipped with the family of seminorms {|| llecry) kex ,where

Wfllc(xy = sup |f(x)] -
z€K

Now from Theorem 1, in 2, the general theorem is derived.

Turorem 3. Lel a semigroup {T(L)} satisly S(1). Then there is a corresponding linear
semigroup {T(¢)®} on the locally convex topological vector space C(X) as follows,

T()®)(z) = f(T(1)z),

for every x € X.

ftemarkd. I K is countable, then C(X ) is a norm space.

2. The charncterization of a dynamical system by a corresponding linear-

semigroup

Let {T'(t)} be a semigroup which has the bounded invariant subset of X. Then we can
distinguish a class of {T°(¢)} from others by the nature of corresponding semigroup {7(t)®}.

Let Dy = T(t)X for every t > 0, and let D = Ny5¢D,. In this section we concern wit.h
the semigroup, whose I is dense in X. Since D is composed of every element whose qrb:t
is continuing back to the infinitely past, our concerning semigroup has the "_gr.oup-hk?"
property. We show it is really a group on the certain extended space E containing X, in
the next theorem. ((13)
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Tneonem. Let {1'(t)} be a semigroup on X and satisfy the conditions

(¢)D is dense inX,
(#)T(t)x = T(t)y implies = = y.

Then there exists the space I which satisfies
(1) XckE

(2) There exist a group T(t) (t € R) on L, ie.

T()T(s) = T(t +3),

TO)=1 where I is an 1identity map,
T(t)z = T(t)=

Jor z€ X, if the right side exist.

I is constructled as follows,

B = {(z,)ll2zn € D,3t >0 such tlmt"lin;o T(t)z, € X}/ ~

,where ~ represents the equivalent relation
. . m !
() ~ (2) & lim T(t)zn = lim T(t)z,

for some t>0.

PROPOSITION. A semigroup {T'(1)} on X satisfies the condition of the above theorem if and
only il its corresponding linear semigroup {T(t)®} on C(X) has the backward uniqueness

property.
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STABILITY OF PERIODIC SOLUTIONS TO ONE-DIMENS IONAL
TWO-PHASE STEFAN PROBLEMS

Toyohiko AIKI (Chiba Univ.)

0. Introduction
Let us consider a two-phase Stefan problem described as follows:
Find a function u = u(t,z) on Q(t, tl) =dJd x [0, 1], J = [Lo'LI] or
Ito'tl)' and a curve = = L({}), 0 <Ll < [/, on J such that
©0.1) pluw, - Uy, =0 inQ(t, t,),
and in QZ(to, t,),

.l.
QL(tO. tl) = {ct,e): 1< L < t,. O <z < L)},

0
Qty L = {tmi Ly <t <ty LL) <z<1],
ucL, L)) =0 for t € J,
(0.2) {
LU = = u (4, L)) + u (1, L(L)+) for a.c. L € J,
u (1,0¢) € 9b(u(t,0)) for a.e. L € J,
(0.3) [ £ o L '
- ux(L.I~) € abl(u(t.l)) for a.e. t € J,

where p: R » R is a continuous increasing function; bi (i=0, 1) is a

proper l.s.c¢. convex function on R and 8b2(°) is its subdifferential
in R.

In this paper, we denole "SP on J" the system (0.1) ~ (0.3) and say
that a pair {(u, L) is a solution of SP on [to.tll. - w LO < L, ¢ », if
U and I salisfy that

wew 2t 1120, 0 n 1=t t w20, 1)),
o "1 o "1
(0.4) [ 1,2
L eW (to.tl).
() . @ t
bi (u(-,i)) € L (to.tl). uct, i) € D(Gb’) for a.c. t € [to.tl]

(0.5) [
and ¢ = 0, 1,
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and that (0.1) ~ (0.3) hold. Also, for - » < té < t; £ =, we say that
{u, L) is a solution of SP on (té.t}). if it is a solution of SP on

Ito.tll for every t; <t <« tl < t; in thevabovc sence. Let T be a positive

0
number, and (u, L) is a solution of SP on R such thal u(r + (,x)

u(l, x)
for any (l,x2) € R x [0, 1] and L(L + T) = L(L) for any L € R. Then
(u, L) is a called a T-periodic solution of SP on R. We put

? = ((u. ly; (u, L) is a T-periodic solution of SP on R).

In Kenmochi (2], for the initial value problems the local existence in
time and uniqueness of solutions were pruved as well as comparison resultis.
The periodicity of solutions has been studied by many aulhers. For
cxample we quote Ishii {1) and Kenmochi ([3). In these papers, the case in
which the sel ? is a singleton was treated. However, in our case the set ?
is not a singleton, in general. Therefore it is interesting to investigate

the structure of the set ?. More precisely, we shall show the sel 2 is

totally ordered with respect to the usual order for functions.

1. Main results

We begin wilh the precise assumptions (al), (a2) on p and bg. t =0,
!, under which Stefan problem (0.1) ~ (0.3) is discussed.

(al) p: R » R is a bi-Lipschitz continuous and increasing function on

~ with p(O) = O.

(a2) For i = O, / and cach L € R, bt

i
t+T t . C s :
b£ = b£ and which satisfies the following

is a proper l.s.c¢. convex
function on R,

conditions (%) and (*%):

1,2

Loc(R)' o, € w{;é(R) salisfying that

(x). There are functions ao €W
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for any - ®» ¢ 8 ¢ { ¢( » and r € D(bi) there exists r° € D(bi)
such that

Ir" =l o< lay (L) = ay(s)1(1 + |r| + |b?(r)|”2).

b:(r‘) - bSer) < Mot - a ()01 + Irl? + 167cr 1)

abg(r) c (- 0] for any r < O and L € R,

ab}(r) c (0,®) for any T > O and L € R.

(k%)

At firsl, we give a sufficient condition in order that the sel 2 is
not empty.

THEOREM 1.1, Assume (al) and (a2) hold and suppose Lhal

there is a posilive constani &, such Lhat
(1.1)
1A t

D(bo) c I&O.w) and D(bl) c (- m, - 501 Jor any L € R.

Then Lhe sel ? is nol emply.

The next thecorem is concerned with lhe siructurc of the set 2.
THEOREM 1.2, Suppose Lhal (al) ~ (a2) and (1.1) hold. T'hen we have .
the follouwing resulls (1) ~ (b):
(1) For any (ut. LL} € i=1 2
(L,O+) = u

z(L.O’). m(L.l~) = uz'z(L.lv), for a.e. ( G‘R.

“l.z 2, Yy,
(2) Lel {ui. Li} € i=1, 2. If )
! . ; _ ¢! ; o) el
‘fo p(ul)(O.z)dz + L,(O),— fo P(Uuy) (0, z)de + 1,(0),
then

z(t) Jor L € R.

(3) ? is a lolally ordered sel wilh respecl lo the usual oreder,

uI(L.m) = uz(t.z) Jor (L.xz) € R x [0,1] and Ll(t) =1

Lhat ig, for any {ut. Lt} €2, i=1, 2 it holdg that
ul(t.w) < uz(t.z) for (L.x) € R x [0,1] and Ll(t) < Lz(t) for t € R,

or

t
w




upClie) 2 upllozg) for (Lyx) € R x [0,1] and L,(L) 2 Lyll) for L € R
(1) There exist Lhe mazimal element {u", ") and the minimum element
{u, L) €2 that is, for any {u, L} € 2,
U (bhe) < ultie) < u,(t, ) for any (L, z) € R x (0, 1),
and
Ll < 1) < ") for any t € R.
(6) Put €, = I} pcuy 0, 2)dz + 1,00 and ¢" = 1 ocu") 0, wrdz +
1" (0). Then for any C € (Ci.C*) there is one and only one {u, L} in ?

such that C = f(’) oW (0, L)dx + L(0).

REMARK_1.,1. Suppose thal (a2) and (1.1) hold. Lel

e,r Jor r 2 0,

p(r) = [ e,r Jfor r < 0,
where ¢, and ¢, are posilive conslants. For any {ui. LL} €2 =1 2
if
1 !
fo p(ul)(O.z)dz + Ll(O) < jo P(uy) (0, z)dz + L,(0),
Lthen

ul(L.z) < uz(t,z) Jor (L, x) € R x [0,1] and Ll(t) < L?(L) Jor ( € R.

The third theorem is concerned with asymptotic stability of the

solution (%, L) of SP on (to.w). - ™ < to < »,

THEOREM 1.3. Under the same assumplions as in Theorem 1.1 for any
solution {u, 1] of SP on (L =), - = < t, < = there exists (u, 1} € 2
such that

uct) - u(t) » 0 in €¢{0,1]) and
weakly in VI’Z(O.I) ag t » =,

and

e
S99




2]

[31

Lit) -~ Til) »0as L = =,
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Shape Optimization for Multi-Phase Stefan Probleins
— Existence of Solutions and Applications —

Atsushi KADOYA

Department of Mathematics
Graduate School of Science and Technology
Chiba University

1.Formulation of an Optimization Problem
Let us consider a multi-phase Stefan problem described as follows:

—Ap(u) =/ in Q(Q) =(0,T) xQ,
SP(Q) { u(0,-) = up in 0,
Alu)=g on () =(0,7) x 99,

where 0 < T < oo, {1 is a fixed bounded démain in R"(N > 2) with smooth boundnry oy,

Q) is a subdomain of { with smooth boundary 8 @ := (0,T) x { and £ := (0,T) x a{};
B : R — R is a nondecreasing lunction on I such l.ha.t

(1.1) { B0) =0, | B(r)|>Co|r|-C, forallreR,

| BE) =B IS Ly |r =7 forallr, € R,

where Co > 0, Cy > 0, Ly > 0 are constants. Ilere we suppose that [ € L}(Q), up € L*(§})
and g € W""(O T L’(Q)) N L3(0, T; H?(§)). :

We use the following function spaces and notations:

(1) We denote by H the usual space L*(§); | - | stands for the norm in If and (-,) the
inner product in H. We denole by C..([0,TY]; H) the space of all weakly continuous funclions
from [0, T) into I/ and by X the usual space H}({).

*(2) We define a bilinear form aq(:,-) on /() by

an(u,v) = /nVu~Vvdz for u,v € I1'(D).

We denote by (-,)q the dualily pairing between H~1(2) and H}(R2), and by Fqo the duality
mapping from JI3(R2) onto H~'() which is given by the formula

(Fav, z) = ap(v, 2) for all v,z € HJ(Q)

Moreover, (-, )q denotes Lhe inner product in L*(9).

(3) We denote by 0 := { Q C {};Q is a smooth subdomain of { } and by V() the set
{z€ Il'(ﬂ), z=0 ae. on{l —Q} for each 2 € O. Clearly, V(Q) is a closed linear subspace
of 11} (Q) This space is a Hilbert space with inner product a(:,*) := ag(-,-) and with norm

| v lg:= a(v,v)'*(=| Vv |n) for v € V(Q).



(4) Now, we introduce a nolion of convergence of closed convex sets in a Banach sjmcq
X, which is due to Mosco [5). Let {K,} be a sequence of closed convex sels in X and I
be a closed convex set in X. Then we mean by "K, = K in X as n — oo (in the sense of
Mosco)” that the following Lwo condilions (M1) and (M2) are satisfied:
(M1) If {n,} is a subsequence of {n}, 2 € K,,, and zx — z weakly in X as k — oo,
then z € K.
(M2) For any z € K there is a sequence {z,} C X such that
2 €Kyyn=12,..,and z, 2 zin X asn— oo.
(5) We denote by xq the characl.enstlc function of 2 on § for any subset € of 1.

Our shape optimization problem is considered for any non-emply subsel O, of O which
is compact in the following sense:

For any sequence {f2,} C O, there is a subsequence {Q,,} of {Q,} with 2 € O,
(C) { such that xqp,, — Xa in L'(§) as k — oo and V(Q,,) = V() in H}((3)
as k — oo (m the sense of Mosco)

EXAMPLE 1.1. (1) Let © be the class of all G'-diffeomorphisms from 2 onlo itself.
Now, let Q' be a subdomain of {} with smooth boundary 3 and ¥ C 1. Given a non-empty
compact subset O, of ©, pul O, = {(2');8 € ©.}. Then this O, is compact in the sense of
(©).

Let {2, := 6,(2')} be any sequence in O.. Then, by the compactness of O, there is a
subsequence {0,,.} of {6,} such that 8,, — @ in C'(ﬂ) as k — oo for some 6 € O,. We see
easily that xq,, — Xa, with = 8(Q'), in L'(€) as k — co. Morcover, V(S2,,) — V(€) in
H}(Q) as k — oo (in the sense of Mosco). Indeed, il zp — z weakly in (S as k' = oo
for a subsequence {nyp} and 2z € V(Q,.k,), then #i(z) = 2z¢(dn, 0 67'(z)) € V(Q) and

7w — 2(8087") = z weakly in I[3(f), so that z € V(). Also, let z € V(R2) and put
2(z) := 2(0 00;)(2)) € V(R,). Then, clearly, we have then z; — z in H§(f).

(2) Let fi := {z;]a] < 2} C R Q. := {zia < |z| < 1} forany 0 < a < } and
Q:={z;|z} <1}. Put O.:={Q,;0<a < 13u{Q}. Then, we see thal this subset O, of
O satisfies compactitess.

In fact, by [5; Lemma 1.8}, the 2-capacily of any singleton is zero. Therefore we see
that V(Q,) — V(Q) in H}(f) in the sense of Mosco as a — 0. _In the other hand, by the
same argument as in (1), we obtain that V(Q.) — V(Q,) in I1}(8) in the sense of Mosco as
a' — a. Hence O, salisfies property (C). It is easy to see that this O, can not be represented
in the form of (1), since there is no C'-diffeomorphism between Q, and Q. o

Now, we give the weak formulation of SP(R).

DEFINITION 1.1. A function v : [0,T] — L?(Q) is called a weak solution of SP(Q)
if the following conditions (w1) - (w3) are satisfied:
(w1) u € C,([0, T}; L2()), u(0) =
(w2) B(u) € L*0,T; H’(Q)) and ﬂ(u) g € L}0,T; H3());
(w3) = foqa) umdzdt + Jaa(B(u), n)dt = fqq) [ndzdt
for all n € L*(0,T; 13(R)) with n € L*(Q(R)) and 9(0,) = n(T',-) = 0.



Now, we consider a shape optimizalion problem. For a given non-emply subset O, of
0, our optimization problem, denoted by P(O,), is formulated as follows:

P0.) 2, € 0,5J(R,) = nlél(; J(9),
where

1 1
1.2 JQ) =+ — Pa |’ dzdt + - % dzdt for Q€ O,
(12 J@ =g [ |Bua)-Bildeditg [ loPdeds for e

ugq being the weak solution of SP(2), and f; is a given function in L}(Q).
The main resulls are stated in the following theorems.

THEOREM 1.1. Let {2,} C O and Q € O such that V(Q,) = V() in X asn— o0
(in the sense of Mosco) and xqa, — Xa in L}(f}) as n — co. Also, denole by u, and u the
weak solutions of SP(Q,) and SP(Q), respectively. Then, as n — oo,

(1.3) (ua(), 2)a. = (u(t),2)a for anyz € 11, t €[0,T)
and

(1'4) 73(11,,) - B(u) in LQ(Q);

where

_ | Blua) in Q(Q’)
Blua) = { ’ inQ - Q) Jfor any X € 0.

THEOREM 1.2. Problem P(O.) has al least one solution ..

2.Uniform Estimates for SP(2)
In this section, we prove the uniform estimates for weak solutions to SP(R) with respect
to 2. For this purpose, given Q € O, we consider a function jg : [0,T] x 1~(22) — R which
is defined in the following way: for each Q € O and ¢ € [0, T, we put

. 2(z))dz - (g(t), 2 for z € L*(Q2),
(2.) jalt, 2) = { an( (=) (9(t), 2)a e ]1'("()0) (@),

where J is the primitive of g with B(0) =0, i.e.
(2.2) B(r) = /0' Bls)ds forreR.

ja is proper lower semicontinuous and convex on H~'(?) and we see (c.[. [I; Proposition
2.6]) that the subdifferential djn(t, <) in J/~'(R2) is represented by

. Bialty2) = FalB(z) - 90)
: for any z € D(9jq) = {z € L’(Q);ﬂ(z)’ —g(t) € 113 (?)}).



According to [1; Theorem 2.1}, problem SP(S1) has one and only one solution u such that
u € W30, T; N1 (Q))N L=(0,T; L3(R)) and B(u) — g € L*(0,T; l3()). In fact, the weak
solution u is obtained as a unique solution of the following evolulion problem in J/~'(R2):

u'(t) + Fo(B(u(t)) — g(t)) = f(t) + Ag(t) for a.c. ¢ €[0,T],
G {50 = S0+ 050 0,7]

We show some uniform estimates for weak solutions of SP(2) with respect lo € O.
LEMMA 2.1 There ezisis a positive constant My > 0 such that

(25) | ug |orans< My, | B(ua) l2ermenS< My

Jor all ) € O, where ug is the weak solution of SP(R).
Proof. By (2.4),

(ua(t), Blua(t)) - 9(t))a
(26) = —(Fa(B(ua(t)) = (1)), Blua()) = 9(t))a + (/(t) + Lg(t), B(ua(t)) - g(t))a
= —an(B(ua(t)) — 9(t), Blua(t)) — 9(t)) + ((t) + Ag(t), Bua(t)) — g(D))a-

The function t — jo(2; u(t)) is absolutely continuous on [0, T} and we have (c[. [4; (3.5) in
the proof of Lemma 4])

(2.7) %J’n(t;Un(t)) = (ug(t), B(ua(t)) — 9(t))a — (4'(t), ua(t)a for ae. t €[0,7].
By (2.6) and (2.7), we obtain that

d f- . 1

U Blua()ds - (ua(0), g))a} + 5 | V(Blua(e)) = 5(6)) &

< Ci{Jo Blua(t))dz — (ua(t), 9(t))a} + Ca{l 9(t) Py + 1 9'C) I + | Bo(8) [} + 1 /(2) 11}-
By Gronwall’s inequality, we derive (2.5). o A

LEMMA 2.2 There exisls a postiive consiant M2 > 0 such thal

(2.8) | tm%ﬂ(“n) lrerrans Ma, | 1PB(un) oo anS Ma
Jor all Q € O, where ug is the weak solution of SP(R).

Proof. As was seen in [l], problem SP(Q) is able lo be approximated by non-
degenerated problem SP(Q)*, € € (0,1]:

{ uw-OFW =/ inQ@),
SP(Q)*{ u(0,) =up in Q,
B(u)=g on Z(R),

where f(r) = B(r) + er,r € R,
In fact, this problem has one and only one weak solution u* € C([0,T}; L*(2)) such that
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t1/3%ﬂ‘(u') € LA(Q(R)) and B(x*) € 12(0, T II'(ﬁ)), and hesides u* — ug in C,([0,77;

L3(Q)) and B¢(u*) — P(uq) weakly in L2(0, 1 4'(R2)), as ¢ — 0. We nole that there is a
positive constant C' independent of € and 2 such that '

(29) sup [ 0'(0) oy + [ | 9(8°()) Figay dt < €
' ogcspr Lo g Loy ="

In fact, (2.9) is obtained in a similar way to the proof of Lemma 2.1. Moreover, multiply
both sides of u; — AB*(u*) = [ by t-c%(ﬁ‘ (u*) — g) and integrale over Q(2). Then, by (2.9),
we have

d
|28 (4) | oo rsmeanS< €, | 1P =B (u*) |2 iLray< C",

(2.10) di
for any £ € (0,1} and Q € O,

where C” is a constant independent of € € (0,1] and 2 € O. Therelore, lelling ¢ — 0, we
see that (2.8) holds. o

3.Proofs of Theorems 1.1 and 1.2
Proof of Theorem 1.1. Put

m { ) 000100
" g in Q - Qn-

Consider a function u, € L>°(0,T; H) such that g(t, z) = f(u,(t,z)) on Q. Here, pul

= | us inQn,
u"_{u, in Q - Q..

Then, we see that @, € L>(0,T; H). By Lemmas 2.1 and 2.2, Lhere exists a sequence {n;}
of {n} and @ € L®(0,T; H) such Lhat

Uy, o U weakly* in L>(0, T; lll,
(3.1) U, >V weakly in 12(0,T; H'(2)),
Uy, (1) = v(t) weakly in J1(Q2) for all t € (0, 7.

By Ascoli-Arzela’s theorem, we sce thal v,, — v in C,.((0,T); /). By using Lemmas 2.1
and 2.2, we easily verify that v,, — v in L3(0,T; H). Since v,, = f(itn,) in Q and (3.1), we
see that v = B(&) and that A(#(t)} — ¢(t) € V(22) for any t € (0,7)]. '

Next, let z be any function in V() and p be any functionin D{(0,T). By the assumption,
there exists a sequence {2,} such that z, € V(Q,) and z, — zin X. Then, by 2,, =0 a.e.
on {} — Q,,, we obtain

- /or(ﬁuuzu)P'dt + /OT a("v‘-u 2a,)pdt = LT(I: Zn, Jpdt.
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Letting k — oo since z =0 on i — 0, we see

- /or(ii, z)np'at + /OT ag(v, z)pdl = /:U. £)apdt.

This shows thal u = @ |g(n) is the solution of SP(2). By the uniqueness, we obtain (1.4).
° ,
Proof of THEOREM 1.2. Let {R,} be a sequence in O, such that J(Q,) = J. =
inf{J(Q); 2 € O} . Then, by assumption, we may assume that V(2,) — V() in X (in
the sense of Mosco) for some €. € O, and xq, — Xa, in L'(}) as n — c0. Now, denote by
u, the weak solution of SP(R2,) and by u, the weak solution of SP(f2,). Then put

O
" 9 in @ — Qn,

and .
_ [ Bw)- in@=Q(@.),
g inQ-@Q.
From Theorem 1.1, it follows that v, — v in L2(0,T'; /) and hence J(2,) — J(Q.). There-
fore J(Q.) = J. and Q. is a solution of P(0.) . o

4.Approximation for P(O,)

In this seclion, from some numerical points of view, we discuss approximalions of 5P(f)
and P(O.) by smooth problems.

Let {#*} = {#;0 < ¢ < 1} be a family of (smooth) functions §* : R — R such thal

F(0)=0, | p(r)=B(r)|<e(r|+1) forallreR,
Iﬂ'(") ﬂ'("')|<bo|r—r'| forallr,r'€R,

E:ﬂ‘(r) >e€ forae.reR,

where Lo > 0 is constant independent of € .
Next, let {x4} = {x%;0 < » £ 1,2 € O.} be a family of smooth functions on Q and
suppose the following condltlons (xl) (x3) hold :
(x1) 0< xa < x4 < 1in © and supp (x4) C {z € §; dist(z,Q) < v}
for any » € (0,1) and Q € O, .
(x2) For each v € (0, 1], {x§; 9 € O} is compact in L' ().
(x3) If v, €(0,1], v =0 [or n — oo and Q, € O, then l.llere are a subsequence {n}
and Q € O, such Lhat Xn " xq in LY({2) as k — oo.

Now, we consider approximate problem SP(Q)"’" e,v,p €(0,1], for SP(Q) :

-Op ) =1~ x“(ﬂ‘(u) ~9) @,
u(0,:) = up in {1,
Puy=g¢ on$.

SP(Q)™~*
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DEFINITION 4.1 A function u : [0,T) — H is called a solution of SP(Q2)**, il the
following conditions {(awl) — (aw3l) are satisfied: . _

(awl) u € C([0, T} 1) N WE((0, T H) 0 (0, T; 1 (), u(0) = uo in

(aw2) p*(u(t)) —g(t) € X lor ae. L € [O,T]i .

(awd) («'(2), 2)5 + a(B*(u(t)), 2) = (S(1) - —I;)-(ﬂ(ﬁ'(U(l)) = 9(t)).2)

for any z € X, a.e. t €[0,T).
According to [3; Chapler 2], problem SP(Q)** has a unique solution u.
Our approximate optimization problem P(O.)**, associated with SP(Q)**, is formu-

lated as follows:
POY™ Q¥ € 0 J*(@¥) = inf J**(@)

where up” is the solution of SP(Q2)** and
1 1
vy P v wpy 2 el — W 2
JQ) = 5 foxa | B") = a P dadtt 5 [(1=x3) | [ det.

THEOREM 4.1. (1) For each e,v,u € (0,1), P(O.)*** has atl least one solution.

(2) Let {e,},{vn}, {tin} be null sequences and let {Q,} C O. and Q@ € O, such that
V() = V() in X as n — co (in the sense of Mosco), x4, = xa in L'({) as n — oo.
Denote by u,, the solution of SP(Q,)~"'~. Then,

X0, Un — Xn - u weakly? in L°(0,T; H) es n — oo,
Ber(u,) = v in L2(0,T; I) and weakly in L?(0,T; I*(1)) as n — oo,
v = f(u) inQ=(0,T)x9Q,
v=g inQ-Q.
and u is the weak solution of SP(Q). In parlicular, if Q, is a solution of P(O)** wilh

e=¢epn,v=vyandp=p, forn=12,..., then Q is a solution of P(O.) .
Proof. See [2] for details. o
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Large Time Behavior of Solutions of

Quasi-linear Heat Conduction Equations

TADASIHI KAWANAGO

Osaka University

We consider the large time behavior of weak solutions of the following initial-

boundary value problem:

u = A¢(u) in QxR
M { u(z,t)=0 on 90 xR™,

uw(z,0) = ug(z) in K.

Here € is a bounded domain in R¥ with smooth boundary Q. We assume that
(A1) ¢ € C'(R) and there exists a constant Ko > 0 such that k(r) = ¢'(r) > I
foranyr e R,

(A2) k(0) =1 (for simplicity).

In this situation, equalions related to (I} have been studied by {1], [3], [5] and others.
In what follows, || - ||, denotes the norm of LP({2) and we denote by {A,}52, (0 <
A1 < z\g < - --) all eigenvalues of —A with zero-Dirichlet condition and by FP; the
orthogonal projection of the eigenspace of A;. It is known that in large time solutions
of (1) behave like those of the linear equation: u; = Au. Berryman and Ilolland (1}
and Nagasawa [5] considered the behavior of classical solutions of one-dimensional

equations related to (I). In [1} Berryman and llolland first obtained the asymptotic
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profile of solutions of (I). Let ¢ be sufliciently smooth. They proved that classical

solutions of (I) satisfies
(1) eMtu(t) o Aer in I5(Q),

where A € R is a constant depending on up (and A > 0 il ug > 0, X 0 in 2), and
e; > 0 is the normalized eigenfunction of —A associated with X). In [5] Nagasawa
obtained an estimate for the rate ol convergence and an asymptotic formula on Pyu(t)

by using the following expression of A in (1):
o .

(2) A=e(u(l),er) — M / e**($(u(s)) — u(s),e1)ds for any t>0.
¢

Let k'(0) = ¢"(0) exist. According to [5], we have

(3) lu(t) — Ae=*te, iy < Cexpl—min{dy —€,2X1}t] for 20,

4) Pyu(t) = Ae™Me; + ézi;(—ge'”"ﬂef + o(e= M1,

where C > 0 is a constant and £ > 0 is any small constant. The author {3} studied -
the behavior for weak solutions of multi-dimensional equalions related to (I). By [3]
we see that the following condition:

(5) there exist constants 8, p > 0 such that [k(r) — 1| < 0/(—log|r})!** for
r € (-1,1)

is a sufficient and an almost necessary condition for (1), and also that the correspond-
ing results hold for the Neumann problem. We remark that in fact equations ol more

general form than (I) are considered in [3] and [5}.

70




However, we can nol sce l'plly from the above result how any solution bchave in
large time. Indeed, if A = 0, (1) and (3) do not give sufficient information on large
time behavior. And there are, as in the linear case, infinitely many solutions with
A = 0. In this note we intend to find the asymptotic profile for every weak solution
and to establish precise estimates for the rate of convergence. In what follows we
shall give our results for the following more general plloblem:

w = Ad(u) — f(u) in O xRY,

(IN{ u(z,t)=0 on 90 xRY,

u(z,0) = ug(z) in Q.
llere we assume that
(A3) There exist @ > 0 and a € (0, 00) such that |k(r) — 1] < a|r|” for any r € R,
(Ad) f:R — Ris a locally Lipschitz continuous function satislying that f(0) = 0
and that there exist constants b > 0 and p > 1 such that 0 < rf(r) < br|P*! for
reR,
(A5) uo € L*(92) and ug does not identically vanish in 2.
We assume throughout the assumptions (A1-5), to which we shall refer colleci.ively
as assumption (A). We shall define weak solutions.

Definition. A weak solution u of (II) on R is a locally IIlder continuous

function in  x R* with the properties:

(i) u(z,t) € L=(Q x RY),

T
@) [ (wo(aln(z,0) — ulz, Tt T)ds+ [ dt [ fun+ wsn - f(uin)de
for any T > 0 and for any 7 € C2(Q x [0, T]) such that 5(z,t) = 0 on 32 x [0, T).
Proposition 1. We assume (A). Then (II) has a unique weak solution u.

Qur main result is as follows:
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Theorem 1. We assume (A). Let u be the weak solution of (II).
(i) There exist m € N and a non-zero eigenvector wm of —A associated wilth Am

satislying
(6) e*tu(t) 2 Wm in H} ().
(ii) More precisely, let £ = min{a + 1,p} and n € N U {0} such that Ap4y <

&Am < Amant1. Then, also for each m < j < m + n, there exists eigenvector w; of

—A associated with \; satislying

mn O™ ) il KAm < Ampnt1
M) W)=Y ey = " i mie).
jam O(te™™*™Y) if KAm = Amins1

To obtain (6), we apply an iteralion argument with the important expression
corresponding to (2) and the eigenfunction expansion associated with —A. The
calculations to establish (7) are based on [5]. The most diflicult slep in the proof
of Theorem 1 is the following Proposition, which is obtained by deriving

Vu(®)ll2
limsup ll__. < 00,
t—oo [fu(t)l2
Proposition 2. (A lower estimate) We assume (A). Let u be the weak solution

of (1I). Then there exist constants C, ¥ > 0 depending on given data such that
lu(t)]]2 > Ce™ for t>0.

We are concerned with a typical example. We see from the following proposition

that the estimate (7) is optimal.
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Proposition 3. Let ¢(r) = r + a|r|°r and [(r) = bjr|P~'r, where a,b,a > 0 and
p > 1 are some constants. Assume that ug € L*(R2) does not identically vanish in .
Let u be the weak solution of (I1). Using the same notations as in the statement of
Theorem 1, we have the following:

(i) Let kA < Anin+1- Then,

m+n
‘li[g eKAm‘(u(t) _ E e_lewj)
Jj=m
Z (o + l)/\ P,(lw,,,| wm) il a+l<p,
aXj+b . . |
= 4 Z (a+ I;A P (l“)mlt'wm) if a+l= Py
j=1
o~ b
Z;;\——P](Iwmlp lw,,.) ‘[ a+1 >p
\ J"

in L}(Q).
(i1) Let xAm = Amynt1. Then,

m+n

hm —c"*""(u(t) - Z e Mw;)

- aAm+n+le+n+l(Iwm Iawm) if a+1<p,
= —(aAnini1 + b)Pm+n+l(|wmlawm) if at+l=p,
- me+,,+1(|w,,.|""lwm) il a4+1> )4

in L*(92).

Remark. 1. Results similar to Theorem 1 hold for the Neumann problem
. . N ..
and for the following type of equation: uy = 3. ., %(a"(z,u)f—z!';) —f(u).
2. In [2] Foias and Saut obtained some results parallel to ours for Navier-Stokes

equation. We briefly mention the main difference between our work and {2]. In our
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quasilinear casc a lower cslimatc of fju(t)||2 is esscntially harder Lo obtain than in
semilincar case. In [2] the result corresponding to (6) is established by proving that
A(t) = [Vu()lI3/lu(t)i? — X; as t — oo for some j € N and that I IA(E) = Ajlde
< 00. On the other hand, we have a different simpler approach to (6); we use an
iteration argument, as mentioned above.

For the proofs of the above results we refer to [4).
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MO = (ue HX(Q)|u £ 0,< &) (u),u>=0)
MO = (rc MOz ST ic#Ba%ic & b @4 }

S’(\') = illfre”ir)supuerq’k (v)

EBC, ST, MSA< A EFE, COBRABRRDES BT PA(v) 2EX B L

Lo,
¢(z)

L=Rp < —
(e +|2i1)™5"

EBnrLE
Lam?

TEXBZOTHB. LT, s=Li_dj,
M = @jS30)2Y < (91 + ag{)s >

a1, T SEERN, d REORTET .

bo(z) 0 |z} <26
z) =
! 1 |z{>36

¢s €C® Th 3.
allhETH ECLES, +2& 8 LRIBEELAONS, LIEicLhROEMEB 3.

EHS.
B (1) i, HAQ)TA>00t s FRAWLEMRER-.

28, Q MEN (star-shaped) %5 51X, Pucci-Serrin[5] = & b
A<V DEsRBEHERELLBZWI EBASH TV 3,
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v(z,0) = vo(z) > 0 z € (0,1).
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v — mml
----------- SR - T
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Nonlinear Ergodic Theorems for Commutatlve Semlgroups

in Banach Spaces

Hirokazu Oka

Department of Mathematics, Waseda Universlty, Tokyo 169, Japan

1. Introduction.
Let C be a nonempty closed convex subset of a real Banach space X.

A mapping T : C » C is sald to be asymptotically nonexpansive If

nT"x - ™y s k fx = yh

for all n 2 1 and x, ¥y € C, whore l1im k. = 1. In particular
n-+e »
if kn =1 for all n 2 1, T Is sald to be nonexpansive.
let J = (TCW):t 2 0) be a famlly of mappings from C Into itself.

]'ls called an asymptotically nonexpansive semigroup on C
If TCt+s) = T(t)T(s) for all t, s &2 0, and iIf T(t)x Is contlinuous
in t 2 0 for each x € C and there exists a function k() : R+ -+ R+

with lim k(t) = 1 such that

Lo

HT(Dx = Tyl S k(dUx =~ yl

for all t 2 0 and x, vy € C. In particular, If k(t) =1

for all t 2 0, then ./ is called a nonexpansive semigroup on C.
Recently, Hlirano, Kido, and Takahashl [5] established nonlinear

ergodic theorems for commutative semigroups of nonexpanslve

mapp ings in Banach spaces.



The purpose of this paper |s to generallze thelr results to the
caso of commutativo somligroups of asymptotically nonexpansive
mapplings. Using our results, we can simultaneously handle ergodic

theorems for asymplotically nonexpansive mappings and semlgroups,

n-1
e.g., we can prove the weak convergence of (% L Tlx:n 2 1) as n+ =
i=0

and (éjz T(t)x dt:s > 0} as s » » for each x € C in a unifled way.

See Section 4.

2. Preliminaries.

Throughout this paper X denotes a uniformly convex real Banach
space, C a nonempty bounded closed convex subset of X, and C a
commutative topological semigroup with the ldentlity.

The value of x* € X* at x € X will be denoted by (x.x*). The

duality mapping J (multi-valued) from X into X* will be defined by

2

Joo = (xF & X*1 e, x™ = uxn? = ux*n?)

for x € X. We say that X Is (F) 1f the norm of X is FrSchet
differentiable, l.e., for each x » O,

Lim Hx+t¥2 = Nxl

toew
oxists uniformly in y e By, where Br = (z € X:ttzll § r} for r > O.
1t is easy to see that X is (F) if and only If for any bounded set

1 2

Bc X and any x € X, lim (207 " Uix+tyll

- mxt® = (y,J0GO)
10 ,

uniformly in y € B.
For a subset E of X, co E denotes the convex hull of E, clco E

the closed convex hull of E.



Let m(G) be the Banach space of all bounded real valued
functlons on G with the supremum norm. For each s € G and f € m(G),
we defline an element rsf in m(G) by (rsl)(t) = f(t+s) for all t € G.
The mappling L fe rsf is a continuous linear operator in m(®
for all s ¢ G. Let D be a subspace of m(G) and u be an element of D*.
where D* is the dual space of D. Then, we denote by u(f) the value
of u at f €e D. To specify the variable t, we write the value u(f)
by J f(t) du(t). When D contalns a constant function I, an element
u 6( D* Is called a mean on D If Hlull = u(1) = 1, Further, let D be
invariant under ry for all s € G. Then, a mean on D Is said to be
invariant if u(rsf) = u(f) for all s € G and f e D.

Let.] = (Tt:t € G) be a family of mappings from C into itself.
J Is said to be a commutative semigroup of asymptotically
nonexpans lve mappings on C if the following conditions are satisfied :

a) T = TsTtx for all s, t € G and x € C ;

s+t¥
(b) For each x € C, the mapping t » Ttx from G Into C is
continuous ;

(c) For each t € G, there exlists kt > 0 such that

NT . x — T.yll £ k,lix — yN for all x, vy € C with lim k_ =1,
t t t teC t

where lim kt denotes the limit of a net k(.) on the directed system
teG

(C,S) and the binary relation S on G js defined by a S b If and

only if there is ¢ € G with a + ¢ = b.

3. Nonlinear Ergodic Theorems.

Slﬁca X is uniformly convex and C is bounded,
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the set FGD = n F(T) of common fixed points of (T_:s e G) Is
seG

nonempty bounded closed convex ; see [9].

Let D be a subspace of m(GS contalning a constant function 1
and Invariant under r, for all s € G. Assume that, for each x € C
and x* € X*. the function s » (Tsx.x*) is In D. Since X Is
reflexive, for any u ¢ D*. we can consider a mapping Jm of C Into

such that
(T xox™ = I (T, %, x duco

for every x € C and x* € X*. Particularly, If v is a mean on D,

then JL s a nonexpansive mapping of C Into ltself.

Theorem 1. Let D be a subspace of m(G) containing a constant
function 1 and invarjiant under fe for all s € G. Let C be a
nonempty bounded closed convex subset of a uniformly convex Banach
space X and let J = (Tt:t € G) be a commutative semigroup of
asymplotically nonexpansive mappings on C such that the function
s (Tsx,x*) Is in D for each x € C and x* € X*. Then, for every
invariant mean u on D"]u is a nonexpansive ratractlon of C
onto F(7) such that JLTS = Ts‘7u = ]L for each s € G and

Jyx € clco (T _x:s € G} for each x e C.

Let D be a subspace of m(G) containing a constant function 1|
and invarlant under re for all s € G. Then, a net ("a) of
continuous linear functjonals on D is called strongly regular If |t

satisfles the following conditions :




(a) sup "uuﬂ <+ ® ;
a )

M) limuw (1) =1 ;
o

*
(c) lim "uu - rsua"4= 0 for every s € G,

where r: is the conjugate operator of re for each s e G.

Theorem 2. Let G, D, C, X and J = (T,:t € G) be as in theorem 1.
Additionally, assume that X Is (F). Then there Is a unlque
nonexpansive retraction P of C onto F(/) such that P'l‘t = TtP =P
for each t € G and Px e clco {T x:t e G} for each x & C.

Further, If (uu) is a strongly regular net of continuous llinear

functionals on D, then for each x e C"7u Ttx converges weakly to
o

Px unlformly In t e G.
For the proof of theorems 1 and 2, see [7].

4. Applications.
In this section, by using theorem 2, we provide nonlinear
ergodic theorems for asymptotically nonexpansive mapplings and

semigroups In Banach spaces. Throughout this section, X Is (F).

Let T be an asymptotically nonexpansive mapping from C into

Itself. Let G = (0,1,2,+++}, J = {T):1 € G) and D = m@) In theorem 2.

We get the following theorems 3 ~ 6.




1Mo pex
Theorem 3. Feor each x e C, n I T x converges weakly to some
i=0

fixed point of T, as n » o, uniformly in k 2 O.

n-1
Proof. Put un(f) = % f 1)) for each n 2 1 and f € D. Then,
1=0 -
(un:n 2 1) is a strongly regular net on D. Q.E.D.

Let N = (0,1,2,---) and let Q@ = (qn m)n meN

satisfying the following conditlons :

be a matrix

©
(a) :;3 mgolqn.ml < + o ;
o
(b) ;1: mgoq“'” =1 ;
«®
(c¢) ;iz “'Eolqn.ln+l - qn,m' =0

Then, Q is called a strongly regular matrix.

Theorem 4. If Q is a strongly regular matrix, then
o

for each x e C, [ 1, me+kx converges weakly to some fixed point
m=0 °

of T, as n » o, uniformly in k 2 0.

L]
Proof. u (f) = f ¢q fm) for each n 2 1 and f € D. Then,
n m=0 n,m

(un:n 2 1) is a strongly regular net on D. Q.E.D.
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)
Theorem 5. For each x ¢ C, (1-r) L rlTl+kx converges weakly to
i=0 .

some  fixed point of T, as r * 1, uniformly on k 2 0.

1

»
Proof. Put ur(f) = (1-r) £ r £C1) for each 0 < r <1 and f e D.

1=0
Then, (ur:O < r <1) Is a strongly regular net on D. Q. E.D.

Let J = (T(t):t 2 0) be an asymptotically nonexpansive
semigroup on C. Let G = R+.\7 = {T():t 2 0) and D be the Banach
space C(C) of bounded contlnuous functions on G in theorem 2,

We get the following theorems 6 —‘8.

Theorem 6. For each x € C, %IZ T(t+h)x dt converges weakly to

some fixed point of‘7. as s » @, uniformly In h 2 O.

1

Proof. Put u_(f) = —]s
s s

0
(us:s > 0) Is a strongly regular net on D. Q. E.D.

fC(t) dt for each s > 0 and f € D. Then,

Let Q : R+ x R+ + R be a functlion satisfying the following

conditions :

(a) sup I; 1QCs, 1 dt < + ® ;
s20

M) lim I; Qes, t) dt =1 ;
st

) 1im I; 1Q(s, t+h) - Q(s, t)| dt = O for all h 2 0.

s9®

Then, Q(-, ) is called a strongly regular kernel.




Theorem 7. If QC-,-) Is a strongly regular kernel,
then for each‘x e C, I; Q(s, t)T(t+h)x dt converges weakly to some
fixed polnt of J/, as s + ®», uniformly In h 2 O.

Proof. Put us(f) = I; Q(s, t)f(t) dt for each s > 0 and f e D.

Then, (us:s > 0} is a strongly regular net on D. Q. E.D.

Theorem 8. For each x € C, AI; e-A‘T(t+h)x dt converges weakly

to some fixed point of 7, as A ¢ 0, uniformly in h 2 0.

Proof. Put u,(f) = xj; o Mfct) dt for each A > 0 and f e D.

Then, (uA:X > 0) is a strongly regular net on D. Q. E. D.
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0. Introdnction
This paper is concerned with a degenerate parabolic equation

w—=Ap(u)=0 InQ=IxN (0.1)
with nonlinear flux condition
0'?)—(:1 +g(t,z,8(u)) =0 onX=1IxT, (0.2)

where I is an inlerval in R of the form [lg,00) or R; N is a bounded domain in
RN(N > 1) with smooth boundary ' = 80;8 : R — R is a given non-decreasing
function; g = g(f,2,€) : R x I' x R — R is a given function which is non-decreasing
in £ €R for a.e. ({,z) € R x T; (3/0n) denotes the outward normal derivative on T.

In this paper we denote by “P on I” the system {(0.1),(0.2)}, and refer to the
papers Visintin [8], Niezgodka-Pawlow [6] and Niezgodka-Pawlow-Visintin [7] for the
existence and uniqueness of a solution to the Cauchy problem for P in a generalized
sense. In the same framework of generalized solutions, under periodicity condition
g(t+T,2,€) = g(l,z,£) on R x I'x R for a given number T > 0, we will discuss some
properlies on the structure of periodic solutions with period T.

1. Statements of main results
Throughout this paper, let #: R — R be a function and suppose that
(B1) B is non-decreasing and Lipschitz continuous on R with Lipschilz constant Cg;

(2) B(0) = 0 and lu"l'lfif@ =:Lp > 0.

Also, let ¢ = g(1,2,€) : R x I’ x R — R be a function satislying the Carathéodory
condition, i.e. g(1,z,£) is continuous in £ € R for a.e. ({,2) € R x T and is measurable
in(l,z) ER xI' for all £ € R.

Moreover, suppose that

{91) g(t, =,€) is locally Lipschitz continuous in £ uniformly with respect o (f,z) €
R x T, that is, for each M > 0 there is a constant C,(M) > 0 such that

| 9(t,2,6) — 9(t,z, &) IS Co(M) | € - €' |

for all €, ¢ with | £ |< M, | € |< M and for a.e. ({,z) € R x T
(92) g(t, 2, £) is non-decreasing in £ € R for a.e. ({,z) € R x T}
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(43) for any £ € R, g(-,-,£) € L (R; L(T)).
For the sake of simplicily of notations we put
I = L*(Q) with inner product (-,) and norm | - |y
and '
V = H'(Q) with duality pairing (-,-) between its dual space V' and V, and
with norm | - |v .
Also, we define a bilinear form a(-,:) on V x V by

a(v,w) = /Vv-Vw dz  forv, w € V,
a

We now formutlate problem P in the variational sense.

Definition 1. Let J be a compact interval of the form [tg,t1]. Then a function
w:J — H is called a weak solution of P on J, if it satisfies the following (wl) and
(w?2):

(wl) u € Cy(J; H), u€ L*®(J x Q) and B(x) € L}(J;V);

(w2) v' € L*(J;V') and

(w'(1), 2) +a(B(u), 2) + /r olt, -, Alu(t, )))zdl = 0

forany z € V and a.e. t € J.

Definition 2. Let J' be the whole line or any interval of the form [lg,00). Then a
function u : J' = H is called & weak solution of P on J', if it is a weak solution of P
on J for every compact subinterval J of J' in the sense of Definition 1.

Next we formulate the Cauchy problem and the problem with the periodic condition
in time for P.

Definition 3. (i) Let J' = [to,11] or [to,00), and let up € H. Then u:J' — H is
a weak solution of the Cauchy problem with initial condition u(lo) = uo, denoted by
CP(uo) on J', for problem P on J', if u is a weak solution of P on J' with u(lo) = uo.

(ii) Let T be a positive number, and let u : R — II be a weak solution of P on R
such that u(t+ T) = u(t) for all t € R. Then u is called a T-periodic weak solution of
PonR.

We now recall an existence-uniqueness result for C P(up).

Theorem 1 (cf.[7,8]). Subpose further that there are two constants My, M, with
M, < M, such that

9(t,z,8(M)) <0, g(t,2,8(M2)) 20 for ae (,z) ERxT. (L.1)

Let to be any number in R, and let M and M, be constants such that M, < M, and
M, > M,. Then, for any function ug in L*>(R) satisfying

M, <u<M: ae onf, (1.2)
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there exists one and only one weak solution u of CP(ug) on J' = [tp, 00) such that
My <u<M,; ae onl xq. (1.3)

Denoting by Pr the set of all T-periodic weak solutions of P on R, the mnain result
of this paper are stated in the following theorem. '

Thcorem 2. Let T be a positive number, and suppose

(94) 9(t + T,2,€) = g(t,2,€) forall( € R and ace. (t,z) €ER x I,
Further, suppose that there are two constants My, My with M, < M,, for which (1.1)
holds. Then the following statements (A) ~ (E) hold.

(A) There exists u € Pr such that

My <u<M; ae onRxS ‘ (1.4)
(B) If wy,w, € Pr, then
g(-,-,B(w1)) = g(-,-, A(w2)) a.e. onR xT. (1.5)
(C) Hfwy,wz € Pr and [, wy(0,z)dz < [, wa(0,z)dz, then
B(w) < B(w2) ae onx Q. (1.6)

(D) If wy,w; € Pr and [ w(0,2)dz < [, w(0,z)dz, then for any ag € R with
Jowi1(0,2)dz < ap < [, wa(0,z)dz there exists a T-periodic weak solution w to P on ‘

R such that
ag = / w(0, z)dz.
a

" (E) Let tg be any number and let u be any weak solution of P on [tg,00). Then
there is w € Pr such that

B(u(nT +-)) = B(w) in L*(0,T; V) as n — oo. (L.7)

In Theorem 2 it is mentioned that { f(w) ; w € Pr } is a totally ordered set with
respect to the usual order of functions on R x 2. Hlowever, as is seen from the following
example, {w € Pr} is no longer a totally ordered set.

Example. Let
r—=1 forr2>1,

Br)y =40 for0 < r <1,
r for r <0,

and g(t, z,€) = 0. Then all the conditions of Theorem 2 are satisfied, and clearly every
measurable function u({,z), which is independent of ¢ € R and salisfies u(,z) =
u(z) € [0,1] for a.e. z € Q, is a T-periodic weak solution of P on R.

2. Some auxiliary results
In place of (0.2) we consider the non-homogeneous flux condition

Qg@:h onX=IxT." (2.1)

and denote “P on I” by the system {(0.1),(2.1)}.
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Definition 4. Let J = [to,1;] be a compact interval. For h € L}, ,(R; L2(I')), we say

A loc )
that u is a weak solution of problem P, ifu € C,(J; H)NW"2(J; V'), B(u) € L3(J;V) .

and

(W'(£), 2) + a(B(x), 2) = /r h(t,-)2dT forany z €V and ae. L € J.

It should be noted here that u is not required to be bounded on J x Q in the
definition.

For a general interval J' C R, weak solutions of P on J' are defined in a manner
similar to Definition 2. Also, weak solutions of the Cauchy problem and the problem
with T-periodic condition are defined just as Definition 3.

The following resulls are due to llaraux-Kenmochi [5).

Theorem 3 Let T be a positive number, and assume that h(t+T, z) = h(t, z) a.e.

on R x T, and r
/ / h(t,z)dl'dt =0
oJr

Then the following statements (a) ~ (d) hold: R
(a) For each ag € R there exists a T-periodic weak solution u of P on R such that

/nu(O,a:)dz = ap.

(b) Let u be a weak solution of P on R. Then u is T-periodic on R. if and only il
u € L*(R; H). R
(c) Let uy,up be T-periodic weak solutions of P on R such that

/ﬂu‘(o,z)dzs‘/nug(o,z)dz.

Then
B(u) < f(ua) ae onR x 1),

(d) For any weak solution u of P on [tg, 00), there exists a T-periodic weak solution w
of P on R such that

/ u(l, z)dz = / w(t,z)dz for allt > 1,
n fy

and :
u(t) —w(t) = 0 weakly in H as{ — oo.

Remark. In [5], the statement (c) in the case of [ w1(0, z)dz < [ w2(0, z)dz was
not discussed. In the appendix we will give the outline of the prool.

Next we state the following two propositions about comparison and convergence of
weak solutions.
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Proposition 1. Let ug; be any function in L°(2), and u; be the weak solution of
CP(ug,;) on a compact interval J = [lo, ;] C R for i = 1,2. Then

[ (1(2) = w2 ())* L)< (u1(8) — u2(8))* |1y, (2.2)

| w1(t) — ua(?) | Ly () <| w1(s) — ua(s) lor(a), (2.3)

for any s,t € J with s < . In particular, if up; < ug2 a.e. on §, then
u; <uz ae onJxfl

Proposition 2. Let {ug,} be a bounded sequence in L*(Q) such that up,, — ug
weakly in I (as n — o0), and let J = [to,th] C R. Then the weak solution u, of
CP(ug,) on J converges to the weak solution u of CP(ug) on J in the sense that

(i) un — u weakly* in L®(J x Q) and weakly in W"?(J; V'), hence u, — u in
Co(J; H);

(i) B(ra).— B(xu) in L2(J; H) N L} ((to,1]; V) and weakly in L*(J; V),

(i") ﬂ( (] ﬂ(un)) - g(' [ lﬂ(u)) in Lz(J; L?(I‘))

In particular, if B(ugn) — B(uo) in L2(J; V), then B(uon) — B(x) in L2(J; V), where
B(z) = [, fo'(’)ﬂ(r)drdz.

3. Sketch of the proof of the main theorem

Now we consider Cauchy problem CP(M;) on [0,T]. Then, by Theorem 1, we
get My < u(-; M) where u(-;2) is a weak solution of CP(z) on {0,T]. So we have
u(-; My) < u(-;u(T; My)) owing to Proposition 1. Iterating this procedure, we see
that w(t) = li'l.]‘l u(t; u(nT; My)) exists. Moreover, by Proposilion 1 we have w(0) =

w(T). Since il is easily derived that
My <w< M, ae onf0,T]xqQ,

the periodic extension of w is a desired T-periodic weak solution of P on R. Therefore
(A) is proved.

Next let wy,wy € Pr. We can easily construct w € Pr such that w < min{w;,w,}.
Then, from (w2) of Definition 1 it follows that

(W'(¢) - wi(), 1) + /r (a(t, 2, B(w(t)) ~ g(t, 2, A(wi(£)))dT = 0

fora.e. t € [0,T],i = 1,2. By the monotonicity of 8 and g(t, z, ), and the T-periodicity
of w,w;, we have (B).

By the above result, there exists k € L}, (R; L*(T")) such that b = —g(-,-, B(w))
for all w € Pr. So the proof of (C) is clear from (c) of Theorem 3.
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We proceed to the proof of (D). Now, let wy,w; € Pr. Then they are T-periodic
weak solutions of P on R. Next let ag € R such that

/r;w;(o, z)dz < ag < /‘;wz(o,z)dz.

Then, by (a) and (c) of Theorem 3, there exists a T-periodic weak solution of P on Rt
such that

B(wy) € B(w) € B(wa) a.e on R x .

By (A) we get g(-,-,8(w)) = —h. Thus w is the T-periodic weak solution of P on R.
Finally we prove (E). Put ug := u({y). Then we see that ap = lim Jo u(nT,2)dz
—00

exists. Since {f(u(nT +-))} is compact in L2(0,T; V) there exist a subscquence {n:}
and a T-periodic weak solution w of P on R such that A(u(n.T+ - )) converges Lo f(w)
in L*(0,T; V). Moreover we see that ap = [, w(0, z)d:: P(w) is uniquely determined
by ao because of (C), and w satisfies the properlies in (E). For the detailed proofs we
refer to the paper Aiki-Kenmochi-Shinoda (1.

Appendix
First let u be any weak solution of Pon J = [lo,tl] For each ¢ € (0, 1], we consider
the approximate Cauchy problem, denoted by 2, of P on J:

et — DPe(u)=0 in (to,11) x Q,
7]
'—ﬂté(;u‘—)' =h, on (to,il) X I‘,
“e(tO) =z in{,
where {f.}, {h.} and {z.} are smooth approximations of 8, h and u(lg, -), respectively,
such that
d

es :l;ﬂc(r) <Cp+1, B(0)=0,

Be — B uniformly on each compact interval of R as ¢ — 0,

h, — h in L*(J; L*(T)) as € — 0,

and

aﬂ: (Z, )
on

= h.(to,”) on T, z, — u(lp,-) in H as e — 0.

By the classical theory, P, has a smooth solution u, for each € € (0,1). We know
that the weak solution u of P is unique. By the usual estimates we have the following
convergences:

u, ~ u in Cy(J; H), and weakly in W'?(J; V"),
u.(lo) — u(lp) in H,
Be(ue) = B(u) weakly in L2(J; V)
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as ¢ — 0 without extracting any subsequence {¢,}, n — oco.

Next, let uy, u3 be iwo T-periodic weak solutions of P on R such that fn (0, z)dx <
fn 12(0, z)dz and let u,,, uz, be the approximate solutions associated with %, ua, re-
spectively. Then, we have, for any s, € R with s < ¢,

| (1) = w2e () [er@<| (wre(s) — uze(s))* lrn)
Therelore, letting € — 0 gives

F(ua(t) = wa(O))F ler@yS| (ur(s) = ua(a))* |oray (A.1)
for any s, € R with s < t.

Now choose z; (i = 1,2) in H such that z; < z; a.e. on J x Q, [, wi(0,z)dz =
Jo 2i(z)dz, and denote by &; the weak solution of P on J = [tg,00) with initial
condition #;(0) = z;. Then, by (A.1), &) < @3 a.e. on J x Q. Now applying (d) of
Theorem 3, we see that there is a T-periodic weak solution w;, i = 1,2, of Pont
such that

#;(t) — w;(t) — 0 weakly in If as{ — oo
and

./nu.-(O,:t)dz=/‘;w.-(0,z)dz. (A.2)

Therefore we have wy < w3, hence f(wy) < f(wz) a.e. on R x €. On the other hand,
(A.2) implies that
) B(w;) = f(w;) a.e. on R xf

Therelore we obtain
B(uy) < f(uz) ae on R xf
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EBIX A

0. 8.
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w(t, z) — Apu(t, z) — G(u)(t,z) 20 in Qg :=(0,To) x R,

u(t,z) > h(t, z) in Qn
- (w— Apu—Gu)u~h) =0  in Qn,
u(t,z) =0 for t€[0,Tg), z €T,
u(0, ) = up(z) in Q.
(r22)

& & T G i3 hysteron operator M (i) ic & b
G(u)(t, z) = H(u(-, z), wo(z))(t)

TIiE» 5 h 3 operator e:-g-z{.
hy up w4+ 2L &MU b & T, N » "Lipschitz Mgt MIc L >~ TEH SN B
hysteron operator” ¢4 2 & &, (V) oMb — BRI EET 295571,

1. Hysteron operators.
Rectangular hysteron.
0<T<Th&L,pp<pricfL,

H,: D(C C([0,T]) x R) — BV(0,T)

wy, A :={r€(0,f];v(r)=pr 2t pp}=¢
HP(&) wo)(t) = { 0: if Al # ¢: v(maxA,) = p,
1, if A # ¢, v(maxA¢) = pa.
vix1% 5. %k Rectangular hysteron & k 3:c &icd 5. {8 L wo 2 switch & 1E
THo,Di2
=0, i[€(0) < p1,
(£:w0)€D<=>w0{ 6[0,1], il py <£(0)<P2,
=1, if pa <§(0).
TIEHZ. it hysteresisi @ % 3 swilch ® model T% 3.
LirL oo M, it demiclosed €175  , demiclosure 2 & 3 ¢ EH/icik 5. (LhrL Co
BaTh ABHBIAE H, EMOT G(BE) 20, chzaE (V) L TR
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grEnRishTws. (Visintin [5].))

Lipschitz hysteron. 2 C X DI VWB WK O X 3 75 hysteron 2% % 5.

Ja, Ja € Lip(R) iz @i, R & fo < fa, 22 WfallLisry allLipy < L
D= { (§, wo) € C([0,T]) x R ; fa(§(0)) < wo < fa(€(0)) }

ETDH. DL &
" : D C(0,T)

EROEH>LENEDB.

fGC([O,T]) 0=ty <t <~ <, =Thd->TE [ti—litc'].l: 12
(E!wfl) €D, te€ [O»T]

fcfowWwL T
] ire=o,”
G w0 ) = 0 i fu(e(t)), max{ £u(€(0)), H(E, wo) tio)} ),
iftefti—,t), i=1,2,---,n.
EEDS.

&‘:) Eﬁm (fhwo,l),(fz,wo,z) € Dy i € [O,T] ‘c*:l L

FH (&1, wo,)(2) — H(&a, wo,2)(t)]
< max{||(fa(€2) = fa(€2))l| oo,y H(fa(€1) — fa(€2))l| Loogo,ys fwo,1 — wo,al}

NiEptohs HI3D Ltc—RBAIIKR S H,
I1#H (&1, wo,1) — H(&2, wo2)lleqory < max{L{|éy — &alleqo,ry, lwo,r — woal}

&5,

K-tz wil(t)
L $4

s

fu




2. (V) omo—B& 1.

1 X, 0z 1
p'(2) := l_’/nz Ig—i"dz. z € K(t) == {z € Wy(Q); z > h(-,) a.e. on 0},

z
00, otherwise

Etne ¢ L0) LofETEMBNBKE Ry (V) QK EATELNS

du ¢
cP) 7 + 08¢ (4) —G(u) 20, forae 0<t<Ty,
u(0) = uy,

E®. G % Lipshilz hysteron Hic & b

G(v)(t, ) = H(v(z, "), wo)(t)

-

TiEYH b h B operalor & L,

f € L=(Qx),
h € W¥2(0,Ty; L*(Q)) N W(0, To; W2(2)) N L=(Qx,),
h(t,z) <0 ae. on [0,Tp) x I,
up € WoP(R) N L=(R), up > h(0,:) a.e. on Q,
wy € LQ(Q): f‘(uo) Swp £ fd(uo) a.e.on{?,

&+ s s (VI) iz WH3(0,Ty; L3(R)) N L2(0, To; WeP(R)) N L™(Q7,) ic BV TH—M %
bo.

589 o g (i)
X = LA(Q;C({0, o)), Y := W'2(0, To; L*(2)) N L=(0, To; W'*(R))

EBC.
G; X N L*(Qn) — X NL™(Qn)

i3 well-defined 235 0 FBD 1,12 € XN L2(Qn) (v1(0) = v2(0) = wp) it L T

G(v1) — G(va)llze(an,) < Lllvr = valle=(ar,»

NRIEp .
(i) we L™(Qq) lcd LT MM
dz ¢
(CP). E+0¢z—-w90, for ae. 0 <t < Ty,

2(0) = Ug,




R —REHR z=k(W) EYNL®Qr) 2 bb,w, To kSR WEMK Cr~Cy >0 2
H-T

llk(@)lly < CiTollwllirgn) + Ca,

"k(“’)"l:"(Qr.) < TO"“’"L"(QQ) + Cs,

Mee)(®) - Kwa)Ollzmay S [ llos ~ wallimapdr

MY 3> . (Kenmochi (2], Kenmochi-Koyama [6).)
(i)Y > X (mg) esb

koG:XNL®(Qg)— XNL®Qy,)

TH5.
(iv) £8 D v,0,2 € XNL2(Qp) e L T

- Mk o G(v)lixnLe(es < IM, ‘
ik 0 G(v1) = k © G(va)||Lew(q,) < /o Lllvy — vaf|eo(q,ydr

BREDIo>DT, koG it L°(Qr) T M—DRMALbo. Chnt (VI) oMt—WR% 5 1
3.0
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