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Microlocal Anhalysis for Nonlinesr Equations

for Incompressible Fluids

MasAO'Yamazaki

Department of Mathematics, University of Tekyo

We would like to study the microlocal properties of the‘s
equations of incompressible fluids, that is, the microlocal

hypoellipticity of the Navier-Stokes equations

. , n ’ v
- %H - Au+ I O _(y -u) + Up = F in (0,T) x Q,
o e k=18xk k
{NS) . ' .
,.V"U = ‘0 . ’ in (OJT) XQ :

and the propagation of local aﬁd microlocal regularity of the Euler

equations
du, 0, - +W=F in (0,T) x Q@
ot k=1axk k ' !
(E) : .
V'U = 0 in (O,T) X Qo

Here 0 < T < o, Q is an open set in R" (n 22), the
external force f = (Fl,"',fn) is a given real-valued fﬁnction of
"+ €1 =100,T] and x € Q, and the velocity u = (ul."',un) and
the pressure p are unknown real-valued functions of t and x.

Microloca1»analysis for nonlinear equations has been recently
studied by many authors. See Lascar [131, Beals [23, [33], C[43],
Rauch [153, Bony [6], Meyer [141, Beals-Reed [5], Rauch-=Reed L1631,

€171, C181, [193, £203. They supposed the existence of a solution



with some regularity, or shewed the short-time existence of such a-
solution; and then analyzed the solution microlocally. UWe work on a .
similar assumption; that is, we suppose the existence of a solution
(u,p) which is “strong’ in some sense. Indeed, it seems too

difficult to discuss on such properties of the ‘weak' solutions at
irregular points, _
i First we introduce a notation. Fof.a function space E C D’(Q)
with a stronger topology than that of . D(Q), let B(I,E) denote

the set of distributions u(t,-) with .a parameter t € ] ‘sUch that

vit,") € £ for all t e,

-and that

Cv(t,"): t € 1) is bounded in E.

Next we define some mnotions which uii] be used to describe our

results.,

Definition.
For a subset C C IxQ and a distribution u(t,x) € B(I,D°(Q)),
we say that uv(t,x) is locally in E on C if, for every compact

subset K of C, there exists a function d(t,x) € C;(IXQ)' such

that @(t,x) 1 holds on some neighborhood of K and that

®(t,x)u(t,x) € B(I,E) holds.

For a subset I' C IX(T*Q\O) = I*QX(Rn\(O)) and u(t,x) as
above, we say that v(t,x) is microlocally in E en T if;'fbr
every compact subset K of I, there ex;st functions

8(t,x) € Co(R™)  and  @(t,x,8) « C°(1,80) such that the following

three conditions hold:




#(t,x) = 1 on some neighborhood of =x(K).

P(t,x,§) = 1 on some.coniC'noighborhood of K.

¢(t,x,0)(“)(t’x) € B(I’E)o Co

Here So denotes the class of the symbols of the zerot? arder
pseudodifferential operators on RZ , * denotes the natural
projection of IK(T*Q\O) onto IxQ, and we say that U is a conic
neighborhood of K if there exists an open subset V of Ix(T*Q\O)
such that K CV CU and that (t,x,if) €V holds for (tyx,§) €V
and 1 2 1. |

Now we can state‘thé main theorem for (NS). UWe suppose that

(u,p) 1is a solution of (NS), and that all u; and p belong to

the space B(I1,D7(Q)).

Theorem 1. (Microlocal hypoellipticity of (NS))

Suppose O <'; < T, x € Q, Z 40 and s > max ¢ 0, n/r-1 3.
if.éach Y is locally in Ui on the set ((t,;)} and each FJ
is mioro\ocally'ih Uzs—l—n/r on ((;,x,z)), then each u; is

mioro]ocallz‘in UES+1_n/r-6 on ((tix,§)3 for every positive

number 8.

QD

Statements for p and 5% will be given in Theorems 4 and S

Jater.
To describe our results for (E), we must put further
assumptions. Let ¢ be a number greater than 1. A function

o(t,x) on IxQ is said to belong to the class Co’o(IxQ)_ if the

fol]ouing two conditions (1) and (2) are satisfied:
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(1) azu(t,x) exists and is bounded, continuous on IxQ for any

a € N such that lal < 0.

(2) Ia:u(t,x)-asu(t,y)l/lx-yIo-k is bounded on IxQ for any
«a € Nn, where k is the greatest integer less than o.
In the next definition and Theorems 2 and 3, we suppose that

(u,p) is a solution of (E) such that p € B(I,D°(Q)) and that

Y € Co’a(IxQ) for every j =1,--:,n.
Remark 1.

For n = 2, Kato [10] proved the existence of the time-global

solution of (E) satisfying the above assumptions. His results can

- be summarized aé follous:

Suppose that Q is a bounded aomaiﬁ with smooth boundary 3Q
and that ¢ is a positive number such that o ¢ N and o > 1.
Put f = 0, and let uo(x) be a function in C9(Q) satisfying
uo(x)'nx = 0, uher;'.nx is the normal vector of 30 at x. Then

there exists uniquely a pair (u,p) which satisfies

u(0,x) = uo(x) on Q,

.1 u(t,x)'nx =0 on IxdQ

and is a solution of (E) satisfying the above conditions.

For n 2> 3, the existence of the solutions satisfying the above
conditions have been obtained by Ebin-Marsden (81, Swann [22], Kato
Ci13, BOQrguignon—Brezis C73, Temam [23] and Kato-Lai [12]. But, in
this case, the number T depends on uo(x).

These results suggest that our assumption is not unnatural.




Next, to state our results, we introduce some notiens.

Definition. We call a connected integral curve of the vector field

o
k Bxk

in  IxQ

a trajectory curve, and a connected integral curve of .

a
ax

n
-. =
k  jok=1 4

du .
[ Jppp—

2
xk_afk

a bicharacteristic. That is, a curve {(t,X(

L 4
in  Ix(T Q\O)

£))> =C 1is a

trajectory curve and ((t,X(t),E(t)ﬁ) =T is abbicharacteristic if

and only if X(t) and B5(t) satisfy the system

ax.
R -
(0.2) Fre uj(t,X(t)),
a5 . n ) auk
(0.3) ==L+ = -
. ; ot k=1 . axj
Remark 2.

Ek(t)———(t,X(t)5.

To solve the above system, we first solve the equations (0.2).

Owing to the Lipschitz condition of uj(t,x)

with respect to x,

the system (0.2) can be solved uniquely, at least locally in time.

Then the linear system (0.3) can be sélved as long as X(t), the

solution of (0.2), exists,
degree 1 with respect to
initial value is not equal

If u(t,x) satisfies

system (0.2) can always be

and the solution

the initial value.

Z2(t) 1is homogeneous of

Especially, if the

to zero, then 5(t) never vanishes.

the boundary condi

solved for whole

tion (0.1), then the

t e 1.




[

"

Roughly speaking, our resu]ts for the equation (E) are as
follous? let C be a trajectory curve and I' be a
bicharacteristic. Then the local regularity of the solution
u(t, ), where t € I is regarded as a parameter, propagates along
C, provided the external force f is sufficiently smooth along C.-
Similarly, if f is sufficiently smooth along I, then the
microlocal regularity of u(t,-) propagates along TI'; that is, for
two different times s and t, the wave front set (modulo an
appropriate‘funqtion space) of wu(s,-) is mapped onto that of
v(t, ) by the transformation of T*Q induced by the diffeomorphism
of Q determined by the trajectory curves,

More strictly, we have the fo]]oqing theorems.

Theorem 2. (Propagation of local regularity in (E))

. . S .
Suppose that FJ is locally in Ur on a.tragectory curve (C

for every i, where s > 1. Then, if there exists a point ~

(tyx) € C such that every uj(t,') is locally in Ui at x, the

solution uJ(x) is locally in Uf on C for every .

Theorem 3. (Propagation of microlocal regularity in (E))

Suppose that ¢ > 2, that every Fj(x) is micro1océ]1y in Uf

on_a bicharacteristic [, and every uj(x) is locally in Uf+2—a

on_the trajectory curve =x(Il).

Then, if there exists a point (t,x,§) €T such that every
u;(t,") " is microlocally in WS st (x,£), the solution uite, )

is microlocally in Uf on T.




Remark 3.

: The trajectory curve and the bicharacteristic play the same
roles as those of the bicharacteristic curve and the
bicharacteristic strip respectively. in the theory of linear
equations. Usually, for higher order differential equations or
first order‘eystems, local regularity does not propagateralong
bicharacteristic curves. But in this case, the equation is
essentially first order, hence all bicharacteristics passing through
the fiber of a base point are mapped onto the same trajectory_curve

by the projection =x. Owing to this fact, our local propagation

‘theorem is velid.‘

Finally we shall consider the reguTarity of %%(t.') and-

p(t,*). For this purpose,.ue put
| any number greater than max ( 0, n/r-n/2 3
(0.4) if s ¢ max { -n/r, n/r-n >-1,
(stn/r+1)/2 if s > max € -n/r, n/r-n 3-1
and | '
(0.5) "p = max {s, T2
for a real number s.

Then we have the following two theorems.

Theorem 4.

Let (u,p) be a solution of (NS) or (E) such that all u;

and p belong to the space B(I,D"(Q)), and suppose that C is a

subset of IxQ. If all Fj are locally in Ui on C and if all

u; are locally in Uﬁ on C, where ¢ is determined by (0.5),




[

"y

du. .

then p is locally in U:+1 on C and all Egi is locally in
W on € if (up) is the solution of (E), and is in w2 on

C if (u,p) 1is the solution of (NS).

Iheorem 5.

Let (u,p) be as in the previeus~thoorgm, and suppose that T

. w
is a_subset of Ix(T OQ\0). If the conditions

Every FJ is microlocally in Uf on TI.

. . . s
Every Y is microlocally in Ur on T.

Every u; is ]dgallz in U: on x(l'), where 7T is determined

by (0.4).

e . . . s+1 Bui
are satisfied, then p is microlocally in Ur -oen I, Egerx 3t
is microlocally in U:fl en ' if (u,p) jis a solution of (E),
and is microlocally in Ui‘z on I' if (u,p) is _a solution of

(NSO .

Remark 4,

Using the results of [25] and L26], we can replace the Soboleu
space U: by the Besov space Bsé and the Triebel-Lizorkin space
qu » which are generalizations of the HSlder space and the Sobolev
space respectively. For the definitions and the basic proéerties of
these spaces, see Triebel [24]. The local propagation theorem for
the equation (E) in .the HSlder space was, as far as the author

knows, first obtained by Giga [9], and the propagation of local

analyticity was proved by Alinhac-Métivier [11].
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‘Proof of these resuts are given in Yamazaki £281, £293.
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Asymptotic Stability of_Traveling Wave Solutions

for Scalar Conservation Laws with Viscosity
Shuichi Kawashima

Department of Mathematics

Nara Women's University
This is a joint work with A. Matsumura (Kyoto University).

1. Introduction and main theorem

We study a scalar conservation law of the form

b4

1.1 up * f(u)X =y

where f 1is a smooth function on an interval [u,u] such that
(1.2) f(u) > 0 for all wu e [u,ul ,

and u is a positive constant. The equation (1.1) admits smooth traveling

wave solutions with shock profile
(1.3) u(t,x) = U(g) , £=x-5t,
(1.4) U(g) »u, as E>zie,

where u,_ e (u,u) and s (the shock speed) are constants satisfying the

Rankine-Hugoniot condition

(1.5) s(u, - u_) = flu) - flu) ,

o+
and the shock condition

14
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(1.6) f'{u) <s < fr{u) , {or equivalent]y, u, <u) .
The function U can be determined by the ordinary differential equation

(1.7) wl, = - st + f(U) +a = - M(U) ,

€
where .a'= - su, + f(ui) is the integral constant. Note that the solution
U of (1.7) with the condition (1.4) is unique up to a shift in £. Fur-
thermore, from the inequality M(u) = s(u-ut) - (f{u) -.f(ut)) >0 (fof u
€ (u+,u_)), we know that U is a strictly decreasiﬁg function of £ ¢ R.
We consider the initial value problem for (1.1) with tﬁe initial con-

dition

(1.8) u(0,x) = ug(x)

where Ug is a bbunded measurable function such that
(1.9) uo(x) Tu, a8 X >ie,

and the integrals

0
I_m(uo(x)-u_)dx and j;m(uo(x) -u+)dx
exist. Under these assumptions I1'in and.Oleinik [2] proved that as t - o,
the solution u(t,x) of the problem (1.1),(1.8) tends uniformly with re-

spect to x ¢ R to the traveling wave solution U(x -st) which is uniguely

determined by the relation

+00
(1.10) j (ug - U) (x)dx = 0 .

They also showed that if the integrals

X ‘ +oo0
f (ug(y) -u_)dy  and f (ug(y) - u,)dy
-0 x

15




decay exponentially e-—alxl (ad>0) as x> -» and x + += respectively,
then the convergence is of an exponential rate e Yt (y>0) as t =+ =

Our aim is to show an algebraic decay rate t™Y (v >0) under suitable
assumptions on the initial data. Let U be a traveling wave solution. We

assume that

(1711)  up - Ve T

and the integral

x
(1.12) w0 = [ (-0

exists for any x ¢ R, and satisfies

2

(1.13) ¥y € La for some a 2 0-.

Here H denotes the LZ-Sobolev space of order %, with the norm [[-|[,,
and ‘Lz (e e R) is a weighted L2-space defined by Lg = {f; <x>°‘/2f € L2 1,

with the norm

1flq = ([ <xot1e00 %0012

where <x>= (1+ |x|2)]/2. We also use the abbreviation ||| for. L2-

norm |+l
and (1.10).

|-|0. It should be noted that (1.11) and (1.13) imply (1.9)
Since f in (1.1) is defined only on [u,u], it is reasonable to

assume

(1.14) uo(x) e [u,u] for any xe R .

In the following we simply assume lluo- Ulh < g instead of the condition

(1.14), where £g is a positive constant satisfying

16
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g

(1.15) gg < min{u ~u,u-u_}.

Our main theorem is the following

Theorem 1.1. ([3]) et u, ¢ (u,0) and s satisfy (1.5) and (1.6),
and let U(x-st) be a traveling wave solution which smoothly interpolates
the asymptotic values U , with the speed s. Suppose that the initial
data Uy satisfy (1.11) and (1.13) for some o 2 0. Then there exists a

positive constant & (seg) such that if ||u,- ully + ¥l < €y, the

- initial value problem (1.1),(1.8) has a unique global solution u(t,x) with

u-Ue c20,05H') n L2(0,0 ;1) ,
(1.16) |
u(t,x) e [u,u] forany t 20, xe R.

Moreover, the solution tends in the maximum norm to the traveling wave

solution at the rate t /2 with y = [a] :

(1.17)  sup [u(t,x) = U(x-st)| s C;(1+) Y 2(|ju - U, + [¥.].)
xe R _ 1 .0 1" "0la

forany t 2 0, where C]A 18 a positive comstant.

Remark 1. Our theorem is motivated by the work of Nishihara [5], where
a similar result was obtained for the Burgers equation (the equation (1.1)

with f(u) = u2/2) by using an explicit expression of solutions.

Remark 2.  For resuls on the asymptotic stability (without decéy rate) of

traveling wave solutions for systems in gas dynamics, see [1], [3] and [4].

17




2. Reformation of the problem

Let us reset the problem (1.1),(1.8) on ﬁhe moving coordinate § =

“x-st. Letting U(g) be the traveling wave solution in Theorem 1.7, we put

(2.1) u(t,x) = U(g) + w(t,2) .

Then the problem is reduced to

(2.2) ¥y - swg + F(UY) - FU)D = v s

(2.3) 9(0,8) = wg(8) = (up-(E) -

Inspired by the relation ¥, = ¥ £ (see (1.12)) we seek the solution of
(2.2) in the form ‘

(2.4) Y= wg .

Substituting it into (2.2) and integrating once with respect to £, we get

(2.5) ¥ - s¥ + FUHY) - FU) =¥

with the initial data
(2.6)  ¥(0,8) = ¥,(€) .
Lef ug define the solution space of (2.5) by
Ko,T) = (¥ e 0T v e 2T )

with 0 < T < +o. Then the problem (2.5),(2.6) can be solved globally in

time as follows.

2

Theorem 2.1. Suppose ¥, € H2 n Ly for some a 2z 0. Then there
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{3

ewist positive constants e, (seg) and C, such that if ||¥yll, < €, the

problem (2.5),(2.6) has a unique global solution ¥ e X(0,») satisfying
. t A
2 2 2 2
(27)  (+6)V|¥(e))3 + jon +OT YD dn s CrlIYglg + 1Y (1D
for t 20, where 0 sy < [a].

For the solution ¥ 1in Theorem 2.1, we set Y=Y Then ¢ belongs

to CO(O,w ;H]) n Lz(o,m ;HZ) and is a global solutiongof the problem (2.2).
(2.3). Therefore we get a dééired solutfon of the original problem (1.1),
(1.8) through the relation (2.1). On the other hand, the solution of (1.1)
is unique in the function space CO(O,T ;H]) n L2(0,T ;HZ). Therefore
Theofem 1.1 follows from Theorem 2.1.

To prove Theorem 2.1, we brepare a local existence result and a priori

estimates of solutions for (2.5).

Proposition 2.2 (local existence). Suppose ¥y € W ama ¥,

< eo/ 2. .Then there is a positive constant T0 depending on €y Ssuch that

the problem (2.5),(2.6) has a wnique solution Y ¢ X(O,To) satisfying

t
(28) IOIZ + [ 15 ar < alixgi3

for t e [O,TO]. Moreover, if ‘i’o € Ls for some a 2 0; then we have

Org v .2 2001 .2
¥Ye CU0Tg5L0) and ¥ e L7(0,T,5L2).

Proposition 2.3 (a priori estimate). Let T be a positive constant.

Suppose that the problem (2.5),(2.6) has a solution VY e X(0,T) satisfying
ve 20,751 o v e 120,T31L2) for some a2 0. Then for each B
e [0,a], there exist positive constants €3 (seo) and C3, whieh are inde-

pendent of T and B, such that if sup ||¥(t) “2 < €5, then
O<t<T
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t
2
@9)  (enTHol; - fon sVl ddr s c X% IR + g, 1)
holds for t e [Q,T], where 0 < vy < [B].

Proposition 2.2 can be proved in the standard way. S50 we omit its
proof; Proposition 2.3 will be proved in the following two sections. Here
'wekshow Theorem 2.1 by the continuation arguments based on Propositions 2.2

and 2.3.

Proof of Theorem 2.1. Choose" € and Cz such that
€, = min{ 53/2, 53/203} 3 C2 = C3 .

Then the local solution of (2.5),(2.6) can be continued globally in time,
pfovided the smalliness condition ||‘1’b||2 s e Is satisfied. In fact we
have ‘l|‘1’0||2 < g, < £5/2. Therefore, by Proposition 2.2, there is a posi tive
cdnsfant To = To(e3) such that a solution exists on [O,TOJ and satisfies
le(t) i, < 2]l¥gll, s €5 for te (o, To] Hence we can apply Proposition 2.3
with T = TO’ and get the estimate (2.9) for t e [0, To] In part'lcu'lar',
puttmg B =0, we have ||¥(t)]l, < C3||‘¥0||2 for t e [0, TOJ Notmg that
1¥(Te)lly < Caep < €45/2, we apply Proposition 2.2 by taking t .= Ty as the
new initial time. Then we have a solution on [TO,ZTo] with the estimate

| () I, = 2||¥(T )||2 seg for te [TO,ZTO]. Thereforfe ll¥(t)ll, < g5
holds on [0,2T0]. Hence Proposition 2.3 again gives the estimate (2.9)

for te [O,ZTO]. In the same way we can extend the solution to the inter-
val [O,nTo] succesively for n = 1,2,---+, and get a global solution. The
estimate (2.7) is a consequence of (2.9) with B8 =a. This completes the

proof of Theorem 2.1.

20




3. Basic inequa]itiés

Let ¥ ¢ X(0,T) (for some T>0) be a solution of (2.5),(2.6) satisfying
¥ e c°(o,T,;L§) and ¥, ¢ L2(0,T ;12) for some « 0. Put |

N(t) = sup IIY(T)"Z for te [0,T],
Ostst

and assume that N(T) §-so, where € is a constant in (1.15). In order to

estimate the solution, we rewrite the equation (2.5) in the form

(3.1) ¥, - (s -f'(U))WE - = F(U,Wg) s

Wee

where
(3.2)  F(U,p) = - (F(U+y) - £(b) - £ (U)y} .

First we study the properties of the traveling wave so]utions, Let

Uy € (u,,u_) be a state uniquely determined by
s = (Fluy) - Fu))/(uy -u) = f'(y,) ,

and let U = U(§) be the traveling wave solution in Theorem 1.1. vSince U
is strictly decreasing in £ ¢ R, there exists uniquely a number §, « F

such that
(3.3) U(EL) = u, .

The following result on the coefficient in (3.1) plays an important role in

deriving a priori estimates of weighted norm of solutions.

Lemma 3.1. For any B e [0,a], there is a positive constant Cq tnde-

pendent of B such that
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(3.8) A = FB(E-E<E- £ (5= F(W) - <6 EF (VD 2 Bog

for any & € R, where <§&> = (1+|€|2)]/2-

‘ Proof. From the inequality Ug <0 .(for £eR) and the conditions
(1.2), (3.3) and (1.6) we can deduce that g(£) =s -f'(U(g)) is an in-
cregsing function of £ ¢ R, and satisfies g(g,) = 0, g'(g,) > 0, and
g(g) g, >0 (resp. g_<0)as £+ (resp. -), where g'(&,) =

u-]f"(u*)M(u*) and g, = s-f'(ui). Therefore, '
)2

']2'9'(E*)(€-£* for £ near &, »

(g - g*)‘ E- Ex >-]'(5 -£'(V)) 2 {

c otherwise,

where c is a positive constant. On the other hand, - <&-§, >1"(U)‘g =
<E-£,>9'(E) > 0 holds for £ ¢ R, and in particular, - <£-€,,>1_"(U)‘S

> g'(g,)/2 for £ near E,. These considerations prove the lemma.

Next, using Lemma 3.1, we get basic inequalities for weighted norm of

solutions.

Lemma 3.2. Foramy B, Y ¢ [0,0], there is a positive eonstant C

independent of T, B and Y such that

@5 eVl ej2<1+rmwr)|§_1 @ 4 j;(1+r)”l‘¥€(t)|§dr
< cllegl? + Yj;u O s[;u MG L
+ JU (1+T)Y<g>B|‘¥HF(U,‘¥€)| dedr )

nolds for te [0,T].

Proof. Let &, be the constant in (3.3). Multiplying (3.1) by
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(1+t)Y<g-¢g, >B‘¥, we have
(3.6)  {7(1+t)<e-£>B%), - Y+ Tcg-g, 5P

+ (1+t)V<g- 5; >B"]Aﬁ;(£)‘lf2 +u(1+t)<g-g, >B\yg2 +

+Bu(1+t)Y<g-g, >B-2(§’F’*)W£ + {...}E

- (+t)<e- g Pur(uy,) |

where AB(E) is defined in (3.4), and {---}g denotes the term which dis-
appears after integration with respect to & ¢ R. Integrating (3.6) over

[0,t] xR and using the estimate (3.4), we have

_ t t
(3.0 (Q+t)TunE s sjo(nrmv(mg_] dr +j0(1+T)Y|\ug(r)|§dr

+

. t t
s cl]ygl? + yjo(l ) y(o) 2 ar BU(] 1) Y<£58 vy | ager

t
+ f j (1+1) V<€ >P 1] [F(U,¥,)| decr )
. _

with some constant C. To get the desired estimate (3.5), we must estimate

the third term on the right hand side of (3.7). Using Schwarz' inequality,

we have

Bcj<g>3'][w€| dE < 2B-|w|§_] + st<g>B']w€2 dg

with a constant C. We choose a constnat R so -large that aC< g_>'] s 1/2
for any |g| 2 R, and divide the integral on the right hand side into two
parts 1, and I, according to the regions |£| 2 R and |£]| < R. Then
we have the estimates I, < ;’H’glg and I, < 35”‘1’5”2 with some constant
C. Substitution of these eatimates into (3.7) yields (3.5). This completes
the proof of Lemma 3.2.
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For derivatives of the solution, we have the following estimates.

Lemma 3.‘3. Let 2=1 and 2. For any Y ¢ [0,a], there is a positive
eonstant C independent of T and Y such that

| Yiraforovi2 o (50 oorYipadt] 2
(3.8) (1+t)Y ||abe(t) | +[(1+T)na w(x)||2 dr

% L 0 £

t
%, 12 2
s cfl|abe 1% + Jo(l )|l |12 dr +

R .
+ J I(l + 1) Y% ) |34 TR (U, Y, ) | dEdr )
0 1% E 3

holds for te [0,T].

2'4
g
4 +t)Ya9é‘¥. Integrate the resulting equation over [0,t]xR. Then we can

Proof. Let % =1 and 2. Apply 9, to (3.1) and multiply it by

get the desired estimate (3.8)2 in the same way as in the previous lemma.

The de‘t_aﬂs are omitted.

4. A priori estimate
We proceed to estimate the solution of the problem (2.5),(2.6)}. Put
Ny = llyola + ||‘P0’€||] for a2 0.

We first take B =y = 0 in the inequalities (3.5), (3.8)] and (3.8)2, and

combine them successively. Then we have
112 + [y 12
2 0 £ 2

t
s C{N02 + JOJ (1¥] + lwggl)lF(u,wE)l + |w£€g| IF(U,‘Pg)gI dedr }

. 2
Since F(U,¥) = 0(|WE12) and F(U, %) = 0(1¥, 1% + [¥|1¥g ) for |¥

£l
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t .
(4.3) O+ )2+ jon +T>Y||wg(f)n2 dr < CN2

+ 0 (see (3.2)), the integral on the right hand side is majorized by
_ . ) .
CN(t)jOH‘Pg(t)IIZ dr

with some constant € = C(eo), where we have used N(T) < €o- Therefore we

arrive at the following lemma.

Lemma 4.1. There are positive comstants €y (s€g) and C = C(g,)
independent of T such that if »N(T) < €y, the estimate (2.9) with B =
Y =0 holds for te [0,T] : R '

t
(4.1) ||w(t)||§ + foll‘l’g(ﬂllgd? SC_'.‘QZ.'

Next, combining (3.5) with (4.1), we derive the decay estimate for Lzé

norm of. the solution.

 Lemma 4.2. Let Y e [0,0a] n Z There areApositive constants e
(se4) and C = C(es)' independent of T and Y such that if N(T) < €55
then '

t

w12 2

(a.2)  (+0Tww2 s (a-y)fou UG TEI
¢ .
Y 2 2
+ j0(1+1) |v(0)12. dr s N
holds for t e [0,T]. Comsequently, fo;;' any 0 < v < [a], we have
. -

Proof. We first estimate the last integral on the right hand side of

(3.5). If N(T) s €gs it is majorized by

t
CN(t)Afo(l UGS
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with a constnat C = C(éo). Therefore, for suitable small. N(T), say - N(T)

< € the inequality (3.5) becomes
. . t : ' t
(a.4) (1+ﬂ”¥h”§+8[(1#ﬂ”vh”é4dr+J(1+ﬂYW(tH2m
o 0 £
2, (F .y 2 by 2
< C{|‘{’0|B + y[o(] +1) |‘l’(T)|BdT + Bjo('l +1) ||‘!’£('r)|| dt }

yith a constant C = C(es).
Step 1 Letting B =o and y =0 in (4.4), we have (4.2) with vy =0,

where (4.1) was used. Therefore the lemma is proved for o < 1.

Step 2 Firstly, letting =0 and y =1 in (4.4), and using (4.2) with

vy = 0, we have (4.3) with y =1, where o 21 is assumed. Secondly,

1 'in (4.4), and using the estimates (4.2) with

letting B =a-1 and Y

y=0 and (4.3) with v =1, we have the desired estimate (4.2) with vy = 1.
Therefore the proof is completed for a < 2.

 Step 3 We repeat the same procedure as in Step 2. vfhe estimate_(4.4)

(with 8 = 0, vy = 2) together with (4.2) (with y = 1) yields (4.3) (with

Y = 2), where o = 2 is assumed. Also, (4.4) (with g = a-Z; Y = 2) to-
gether with (4.2) (with y = 1) and (4.3) (with y = 2) yields (4.2) (with

y = 2), which proves the lemma for o < 3. | '

Repeating the same procedure, we can get the desired estimate (4.2) for any

a 2 0. This completes the proof of Lemma 4.2.

Finally, we show the same decay rate t'Y/Z for derivatives of the

solution.

Lemma 4.3. Lef 2="1 and 2. For any 0 s vy < {al, there are posi-
tive constants € (<eg) and C = C(es) independent of T and Y such

that 1f N(T) < €gs then the estimate
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3]

. t
2+1 2 2
(4.5),  (+0)7)ahue))? +J0(1+Tm|z;E ¥(x) [P dr < on
holds for t e [0,T].

Proof. Necmmme(&8&(£=],2)mm(43L If MT)seo,we
last integral on the right hand side of (3.8)] is majorized by
gt " 2
cN(t)fou 1)Vl | e
Therefore, fdf suitably small N(T), we have

. ' ot .
(1+8)7[l¥g(t) 12 + jou +T)Y”w€€(r)u?m

: 2 t Y 2
< clllrg el + [ (1m0 P ey
This inequality together with (4.3) gives the desired estimatev(4.5)1.
Similarly, we can obtain (4.5)2-using the estimates (3.8)2, (4.3) and (4.5); .

This completes the proof of Lemma 4.3.

Now, the estimate (2.9) follows direct]y'frOm_(4.3), (4.5)] and (4.5)2.

Therefore the proof of Proposition 2.3 is completed.
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-On the equilibrium configuration of a rotating mass of

fluid with self-gravitation.

by Hisashi OKAMOTO

Dept. of Math. Fac. of Ssci.

University of Tokyo

§1. Introductidn.

In this note we state a very classical ( but not so familiar t
mathematicians ) problem in fluig mechanics. It is stated as

follows:

PROBLEM. Suppose that a mass of fluid.lies ih the three dimensional
Euclidean space. By assumption the only force which acts on the
fluid is that caused by the gravitation due to itself. Wwe suppose
that the body of fluid rotates with a fixed axis with a constant
angular velocity. Then, find a surface which encioses the fluid in

an equilibrium state.

This problem was first proposed by>Newton in his famous
"Principia”, and then devéloped by Maclaurin and Jacobi. Since that
time, a large number of famous mathematicians made important
contributions to this problem. But here we réstrict ourselves to a
most simple model considered by Maclaurin and Jacobi which we

describe below. We first prepare some symbols. Let (x, v, z) be
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a goordinates system in I?. We take the z-axis as the axis of
rotation. For ‘a compact closed surface I, we denote by Q a
domain bounded by T. Now the problem which we consider in this

note is described as follows:

PROBLEM (P-8). Given a constant w,.find a compact closed surface

I'' such that

w2 é 2
(1.1) V + 5—(x + y°) = constant on T,

where V -is a function on I?' given by
(1.2) V(x) = J ' .

REMARK. The function V is a'C1-function defind on Ie which
represents a potential of the gravitation. The constant w 1is the

angular velocity.

This model is deri&ed in the following wéy.' We assume that the
fluid is'incompressible and inviscid. For simplicity we é;sume that
Athe density of the fluid is the unity. We neglect the effect of the
surface tension. Furthermore we assume ( although this is a very
restrictive assumption ) that the fluid is at rest when it is viewed
in a coordinates system which moves around the z-axis with the
angular velocity w. Then the Euler equation for tbe motion of the

fluid is written as

\Y
SR -
_ o ap A

wy-= ay+'—"ay,
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where p is the pressure of the fluid, V.  is a poteﬁtial of the
self-gravitation, whence it is given by (1.2)." Consequently»we
obtain

w: 2 .2

Pp=V + 5—(x + yY~) + constant.

Since thé fluid is in an equilibrium state, the pressure must be
constant at the boundary. Consequently we obtain the condition
(1.1).

As is mentioned before, this problem has attracted a large
number of mathematitians. But the most significant theory was
developped independently by Poincaré {5} and by Lyapunov [6]. 1In
the following section we review some of thier results and reconside:

the problem from the viewpoint of modern mathematics.

§2. Explicit solutions.

We first consider_the simplest case, i.e., the case where the
angular velocity is zero. In this case the sphere is obviously a
solution. The converse is also true. This was first proved by
Lyapunov based on some physical principle. His "theorem" can be
read as follows:if the eguilibrium shape in the case of w = 0 is
"stable", it must be a sphere. A slight generalization of this

theb:em has obtained recently in [4]. It is stated as follows.

THEOREM 1. If T is a solution to (1.1) with w = 0, then it is
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necessarily a sphere.

This theorem is a generalization of Lyapunov's in that'THEOREM 1
does not require the stability in the assumption. The proof of
THEOREM 1 is completely different from that by Lyapunov. Actually
the proof is based on the " moving plane method ", which was used by
Alexandrov, Serrin, Gidas-Ni-Nirénberg and recently Matano , where
fascinating resuits were obtained ( see [4] ).

We now consider the case where w > 0. 1In this case the sphere
is no longer a solution. But an ellipsoid becomes a solution. This
might be guite natural when we see the term due to the centrifugal.
force .in (1.1). To seek a-solution we consider the eliipsoid' |

described as follows:
X 2 z
(2.1) Q ; _+z_,2_+__<1,
b

We assume that a ¢ b ¢ ¢. 1In the special case where a = b,
Maclaurin determined in 1742 a necessary and sufficient condition
that £he éllipsoid (2.1) becomes a solution. Later C. G. J. Jacobi
solved the problem for the general.ellipsoid in 1834, In what
follows, following Lamb {2], we give a criterion that the ellipsoid

(2.1) with a = b become a solution.

We start with a formula that

d 2 2 2 =
] , - —ax? - - 8 ,
(2.2) V(x) JQ'I_LTx—y ax® - By® - vz2© + ( xe @)

where § 1is given by (2.1). a, B, Y and § are constants given

by
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© -} ©

a = ﬂabcj ——EQA——, B = nabcj ——EQA—— ; @ = nabcf de ,
0 (al+))a 0 (b%+X)a 0 (c?+0)
§ = mabc f Q% where 4 = {(a%+0)(B%+0)(c2en)3 2. In the
0

outside of the ellipsoid V is also represented explicitly, see
[1, 2] for instance. By this formula the equilibrium condition

{1.1) is now expressed as

(%w2 - a)x2 + (%wz - B)y2 - Y22 = constant
2 2 2
on -)(—2+L2+z—§=1.
a b c
This is equivalent to
(2.3) C(qu? - 0)a? - (3% - B)b? = -yel.

For simplicity we restrict ourselves to the case where a = b > ¢,
e.g., the Maclaurin ellipsoid; Since the fluid is rotating, it is
natural-that we assume the length ¢ of the z-axis is the smallest
But, actually, we can prove that there is no ellipsoidal figure of
equilibrium Qith c>a, b ( see [2] ).

Now we introduce a variable £ such that

2 1/2

a=b=LuLc . (0(C<‘”)-

4

Then the constants are expressed as

@ = 8= mctezeot™e - 22, v« 21(220)(1 - geot™ ).

In the present case the condition (2.3) is expressed as
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2 Ca
(2.4) z0? = o - ¥S = (3c%enizeot g - 32

This is the condition discovered by Maclaurin. The graph of this

function is drawn in Fig. I.

%é
Pg‘.l'
Consequently, for 0 < w2/2 < 0.22466, there is two roots of the
eguation (2.4). By means of these root g, the ellipsoid (2.1)
2 1/2
with a = Db = LS—%ll———c become an equilibrium configuration of the

fluid. " These are called the Maclaurin spheroids.

§3. Bifurcation.

As we have observed in the preceding section, there exists an
ellipsoid of revolution which is an equilibrium shape for some w.
On the other hand, there is an ellipsoid with three different length
of the axis, whicﬁ was discovered by Jacobi in 1834. F&r the proof/
see Lamb [2] or Hagiwara [7). 1Is is worthy of notice that for wz

smaller than 0.1871 there are four ellipsoids of equilibrium, two

of which are Maclaurin spheroid, and the remaining two are the
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Jacobi ellipsdids. Actually the two Jacobi ellipsoid is mutuallyA
congruent and one 1is obtained from the othe; by changing the x-axis
and the y—axiﬁ. On the other hand, the two Maclaurin spheroids are
not congruent. These series of solutions exhibits a concrete
example of bifurcation phenomena. Namely fhe Jacobi sequence
bifurcates from the Maclaurin sequence. The famous discovery of
Poincaré and Lyapunov is that there is a codntable number of
sequence of non-ellipsoidal figures of equilibrium which bifurcates
from the Jacobi ellipsoid. Consequently this is an example of
secondary bifurcation. Although the configuration of the ‘solution
emanating from the Jacobi ellipsoid can be approximately seen by
using the Lamé functions, the configuration of the solution which
are far from the bifurcation point was ﬁot knowﬁ until ve:y.
recently. _Buﬁ, according to the progress of computers, various
kinds of equilibrium solutions are computed very accurately. .Among
others; Eriguchi and Hachisu have made a great contribution { see,
e.q., [8, 91 ). According to there computations; the bifurcating
solution becomes distorted and in some cases it becomes avdouble
star.

The papers by Poincaré or Lyapunov was written about 100 years
ago. Hence we think that fo reconstruct their "proof" has some
significance from the viewpoint of modern mathematics. Further, it
is an interest open problem to give a mathematical description of

the bifurcating solutions which are far from the ellipsoids.
§4. Nonstationary problem.
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So far we haved discussed the stationary problem. In this
section we consider the system of equations which describes the
nonstationary motion of the self-gravitating perfect fluid. We
first make a definition. For a fixed time t, the domain occupied
by the fluid is denoted by Q(t). The boundary of Q(t) is denoted

by y(t). We assume that the boundary vy(t) is given by

F(t,x,y,2) = 0,

Then the problem is to find Y{t), 3 = (u1, Uy, u3) and p

satisfying the following equations:

-
(4.1) g% + (VT = - Up + WV in U Q(t),
0 < t
(4.2) divu=0 , in U Qt),
_ . 0 <t
(4.3) a_rt: +uVF =0 - | on Y(t),
" (4.4) p=20 : on Y(t),
(4.5) E(O,x,y,z) = Ko(x,y,z) and Y(0) are given.

Well-posedness of this system of equations are not known until
now. If this system can be solved, then we will be able to study
the stability of equilibrium states. So this is also an interesting.

open guestion.
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Partial Functional Differential Equations and Optimal Control

Shin-ichi NAKAGIRI
Department of Applied Mathematics

Faculty of Engineering, Kobe University, 657
Kobe, Nada, JAPAN
1. Introduction

There exists a great number of literatures which study optimal control
problems of abstract control systems in Bahach and Hilbert spaces (seé books
[1,2,3]  and the referencés cited therein). Thé most studies have been done
for the systems without delay, and the papers treating the systems wifh retar-
dation are not many ([4,5,6,7,8). Furthermore in the above literatures the
continuous retardation effect is npt in consideration and the coﬂcept of fun-
damental solution (or Green function) is not used so that the calculations
are complicated.

— In this paper we study some typical optimal control problem, a kind of
integral convex cost problem for general linear retarded systems in Banach
spaces. Our approach to solve the problem is based on the represéntation
formula of the (mild) solution in terms of the fundamental solution and the
variational method developed in [1] and [93.

The content of this paper is as follows: AZter system descriptions and
formulation of the control problems are given; the retarded adjoint system is
introduced and the representation of the adjoint state is given in Section 2.
In Section 3, two existence theorems of optimal controls are given, one is
for bounded control set and the other is for unbounded control set. In Sectio
4, the necessary conditions for optimality are described by the adjoint state
and integral inequality. Some exampies of necessary optimality conditions for

technologically important costs are zlso given in Section 4. In Section 5, th:
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maximum principle for Lagrange problem is established with some.examples. In
Section 6, the bang-bang principle for terminal value problem with time varying
control domain and its applications to uniqueness and expression of the optimal
control are given under some regularity condition of the adjoint system. All
proofs of the results in this paper are sketched or omitted. Detailed proofs

will appear in [10].

2. System Description, Control Problem and Adjoint System
First we give the notations and terminology used in this paper. Let X

and Y be real (separable) Banach spaces with norms | 'I and /s respec-

|1y
tively. The adjoint spaces of X, Y are denoted by X*, ¥Y* and their norms

are denoted by and . We write the duality pairing between X

e g

and X* by <, > and the pairing between Y and Y* by < Let

’ >Y’Y*.
L(x,¥) be the Banach space of bounded linear operators from X into VY. When
X =Y, L(X,¥Y) is denoted by L(X). Their operator norms are denoted by || -|| .
Given an interval I ¢ ﬁ; wé denote by LP(I; X) and C(I; X) the usual
Banach.spaces of measurable functions which are p-Bochner integrable (lsp<®) or
essentially bounded (p=~) on I and stfongly continuous on I, respectively.
The norm of LD(I; X) is denoted by || -||L - The function . Xy means the

P
characteristic function of the interval I.

Let T >0, h>0 be fixed and let I = [0, T1, I, = [~h, O]. We consi-

h
der the following linear hereditary control system on X:
0
ax(t) _ a £(t)

—ar = ox(t) + . N (s)x(s+t) + f£(t) + B(t)u(t) a.e. ¢t ¢ I, (2.1)

(cs) x(0) = go, x(s) = gl(s) a.e. s € [-h, 0), (2.2)
L ]
u € Uad'

r

0
where £ ¢ L (I; X), g = (g ,gl) € X X Lp,(I : X)), U < LD(I; Y), p, p'ell,=],

h ad
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BelL (I, L(¥,X)) and Ao generates a strongly continuous semigroup T(t),

t20 on X. As for the retardation term in (2.1) we suppose that the

Stieltjes measure N is given by
0
m :
nis) = - E X (<, -n (81, - [ D(§)ag s €I, (2.3)
r=1 r s

where 0 = hl < eeee < hm < h are non-negative constants, Ar (x=1l,---, m)

are bounded linear operators on X and D € L (I Lx)).

The‘quantities x{t), ult), B(t) and Uad in (CS) denote a system

state (or a trajectory), a control, a controller and a class of admissible
controls, respectively.

Let G(t) be the fundamental solution of (cS) which is a unigue solution
0

T(t—s)j an(£)G(E+s)ds, t 20
o -h : (2.4)

of
T(t) + J
G({t) =

o, t <0,

where O is the null operator on X. We know that ~G(t) is strongly conti-

nous on R'. If the condition
D€L (T Lxy), 1/p" +1/q =1 (2.5)

+ : .
is satisfied, then for each t € R- the operator valued function Ut on Ih

defined by
s
m
Ut(S) = I G(t—s-hr)Arx[_h , 0-](s) + I G(t-s+E)D(E)4AE, s € Ih (2.6)
r=1 r -h

belongs to Lq(Ih; Lgxn . Hence the function
t
x(t) = x(t; £,9) + [ G(t-s)B(s)u(s)ds (2.7)
0
is well-defined and is a member of C(I; X), where
t 0

x(t; £,9) = J Glt-s)£(shas + ( Glaie® + ! U (s)g (s)ds ), t e I. (2.8)
0 -h ©
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It is proved in [10] that the function x{t) in (2.7) satisfies the integra-
ted form of (2.1), (2.2) in terms of T(t) if (2.5) is satisfied. In this
sense we shall call this x(t) the mild (or weak) solution of (CS). Since
we use the class of mild solutions (2.7) to investigate the control problems
for (Cs), the condition (2.5) is élwaysvassumed.

In what follows thg admissible set Uad is assumed to be closed and con~
vex in LP(I; ¥Y). We sometimes denote x(t) in (2.7) by xu(t) to express

the dependence on u ¢ U The function xu is called the trajectory corr-

ad’
esponding to u.

Let J = J(u,x) be the integral convex cost given by
J= ¢o(x(r)) + J (£, (x(t),t) + kyluit), t))at, . (2.9)
I
where ¢o : X + R, fo : XX IR, ko : ¥YX I+ R. We study the following

control problems P and P, on the finite interval .I = [0, T).

P,. PFind a control u ¢ V.4 which minimizes the cost J subject to the

constraint (CS).

P_. Find optimality conditions for (u, x=) such that

2
inf J(u,x) = J(u, x=), uweU .. (2.10)
u ad
uevy
ad
In Pl such as u € Uad is called an optimal control for the cost J. In

P, the pair (g, x3) is called the optimal solution for J. We will solve

Pl partly by showing the éxistence of optimal controls in.Section 3 and
solve P2 by deriving necessary optimality conditions of both integral and

pointwise types in Section 4. More further properties such as maximum pri-

kY .

nciple and bang-bang Frinciple are studied in Section 5 and Section 6. To
give a difinite form of those optimality conditions it is required some know-

ledce oz the adjoint systen.
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Now we introduce the retarded adjoint system in the case where X is ref-
lexive. Let X be reflexive and qa € X*, qi € Ll(I; X*). The retarded
adjoint system (AS) on X* is defined by

Splt) Atp(t) + f an*(s)p(t-s) - qf(t) =0, a.e. teT

(as) dat -h (2.11)

P(T) = - qi- p(s) =0 e (T, T+h],

where Aa, n*(s) denote the duals of Ao, N(s), respectively. Since X

is reflexive, it is known [11] that the adjoint operator Aa generates a co-
semigroup T*(t) on X* which is the adjoint of T(t), t 2 O. Hence we
can construct the fundamental solution G, {t) as in [10]. That is, G, (t)

is characterized as the (unique) solution of

T (£) + J T+ (t-s) | an* (£)G, (E+s)ds, t 2 0

J_
6 (8) = ° h (2.12)
' o, t<o.
We denote by G*(t) the adjoint of G(t). Then it is verified that G*(t)

= G, (t). By changing time direction in (AS), we consider the following

system on X*:
0
aw(t) _ Atw(t) + an* (s)w(t+s) + q*(T-t) a.e. tel
at 0 h 1
(Cs)* (2.13)

w(0) = - qs, w(s) =0 s € [~h, 0).

The mild solution w(t) of (CS)* is represented by
' t

wit) = G*(t) (~q¥) + [ G*(t-s)qy (T-s)ds (2.14)
‘o

It is easily seen that the system (CS)* is transformed to the system (AS)
by a change of variable t -+ T-t. Hence by (2.14) the function p(t) given

by
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T
p(t) = w(T-t) = G*(T-t)(-qa) + [ G*(s-t)(-qi(s))ds, tel (2.15)
t
may be called the mild (or weak) solution of (AS). We often call that p(t)

in (2.15) solves (AS) in the weak sense.

-Remark 2.1. Even if X is not reflexive, the adjoint system can be con-

structed by the adjoint theory in [11].

3. Existence of Optimal Control
In what follows we assume that Y is reflexive and 1 < p < o, Ve

consider two cases to solve the problem Pl, one is the case where Uad is

bounded and the other is where Uad is unbounded in LP(I; Y). For a boun-

ded U-ad we suppose the following assumption Hl .on ¢°, fo and ko.

Hl: (1) ¢o : X+ R is continuous and convex;

(2) fo : XX I*R is measurable in t € I for each x € X and con-

tinuous and convex in x € X for a.e. t € I and further for each
bounded set K € X there exists a measurable function m €

Ll(I; R) such that

sup |f°(x,t)| < mK(t) a.e. te€I;
x € K

(3) ko : ¥ XI<+R satisfies that for any u € Uad' ko(u(t),t)_ is

integrable on I and the functional £ LP(I; Y) * R defined

0
by
§olu) = Lko(u(t) Jt)at (3.1)

is weakly lower semi-continuous.

THEOREM 3.1. Let U,q De bounded and H be satisfied. Then there

exists a control uo‘E C,; that minimizes the cost J in (2.9).
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(Proof) 1ILet {un} be a minimizing sequence of J such that

inf J = lim J(un,x ),
ueEy n¥® n
ad :

where xn is the trajectory corresponding to u - Since Uad is bounded

and weakly closed, there exists a subsequence fu } < {un} and an uo €

U such that
ad

u * u weakly in L (I; Y). (3.2)
"k ° P

Using (3.2), H, and Legesgue-Fatou's lemma, u

1l 0

control for J.

is shown to be an optimal

Next, we consider the case where Uad is unbounded. In this case we

suppose Hl and the following additional assumption Hz.

H2: (1) there exists a constant ¢ such that ¢0(x)‘ 2 c, om X;

> 0 such that fo(x,t) 2-¢ oOn

(2) there exists a constant cC 1

1l
X X I;
. . . . +
(3) there exists a monotone increasing function 90 € C(R ; R) ~such

that lim eo(r) =% and

rro
= 20 .
£y JIko(u(t),t)dt 0(H u llL ) for uwewuU .
THEOREM 3.2. Let H1 ‘and Hz be satisfied. Then there exists a cont-
rol Uy € Uad which minimizes the cost J in (2.9).

(Proof) Note that

J 2 eo(||u HL ) +cy-eT for ueu,,.
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4. Optimah'ty Condition

In this section we study the problem P_, or we seek necessary 6ptimalit

2
conditions of the optimal solution (u,x) for J in (2.9). The existence
of optimal solutions is assumed in this section. To give two types of opti-

mality conditions we introduce the following two assumptions H3 and H:.

H.: (1) ¢

3 ot X * R . is continuous and Gateau differentiable, and the

Gateau derivative d¢o(x) € X* for each x ¢ X;
(2) fo: X X I+ R is measurable in t € I for each x ¢ X and con-

tinuous and convex on X for a.e. t € I and further there exi-

st functions Glfo : X X I > X+, 91 € Ll(I; R), 92 € C(R'; R)

such that

a).alfo is measurable in t € I for each x € X and continuous
in x € X Vfor a.e. t € I and the value alfo(x,t) is the
Gateau derivativé of fo(x,t) in” the first argument for (x,t)
in XX I, and

b) |8 f (x,0)]y, < B, (e) +8,(|x[) for (x,£) € x X 1;

(3) ko: Y X I+ R is measurable in t € I for each u € Y and
continuous and convex on Y for a.e. t € I and further there
exist functions 9.k : YXI>Y* O €L (I; R and M, > O

10 3 q 4
such that
a) 3lko is measurable in t € I for each u € Y and continuous
in wey for a.e. te€ I and the value 31k0(u,t) is the
Gateau derivative of ko(u,t) in the first argument for (u,t)

in Y X I, and

b) |81ko(u,t)ly* S 05(t) + M4|u|§/q for (u,t) € Y % I.

Next we give the comdition (3)w which is different from H3(3).
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w .
(s) kO: Y XI + R is measurable in t € I for each u € Y and con-

tinuous and convex on ¥ for a.e. t € I and further there

exist a function es € Ll(i; R) and M, > O such that

|k0(u,t)| < es(t) + M6|u|$ for (u,t) € Y X I.

The assumption H:

is for the differentiable costs and H: is for non-differen-

is the set of conditions H3(l), H3(2) and (3)w. The
assumption H3
tiable costs. The following is the main theorem which gives the necessary

conditions of optimality for the problem P2'

THEOREM 4.1. Let H, (resp. a‘;) be satisfied and let (u,x) € U_, X C(I; X)

be an—éptimal solution for J in (2.9). Then the integral ineguality

I <v(t)=-u(t), alko(u('t).t)-B*(t)p(tPY Y*dt 20 foi all v € Uad (4.1)
I r

(resp. jI<9(t)-u(t),-B*(t)p(t)>Y'Y*dt + I (ko(v(t),t)-ko(y(t),t))dt 20

<1
for all v €U (4.2))
ad
holds, where. T
p(t) = - G*(T—t)d¢°(x(T)) - J G*(s-t)alfo(x(s).s)ds. (4.3)
t
Iif Uad = LP(I; X), then the condition (4.1) is reduced to that
alko(u(t),t) - B*(t)p(t) = 0 a.e. t€1I. (4.4)

Furthermore if X is reflexive, p € Cc(I; X*) satisfies

dgit"+,hap‘t’ + J-hdn*(S)p(t-S) -'alfo(x(t),t) =0 a.e. te€oI,
(ns)

p(T) = -d¢o(x(T)), p(s) = 0 s € (T, T+h]
in the weak sense.

(Proof) Let H3 be satisfied. Then the cost J given in (2.9) is Gateau

68




differentiable. The inequality (4.1) follows from the necessary optimality
condition

J'(u(v-u) 20 for all v E'Uad

in [1,p.11] and the representation (2.15). Next, let H: be satisfied.

Then we can use the optimality condition

7 - Eo)'(u) (v -u + ( EO(V) - Eo(u)) 2 0 forall veU,
in [1,p.13] to obtain (4.2), where Eo is ‘given in (3.1). . The condition

(4.4) is obvious from (4.1) and Ua

ac= LP(I;AX).

Remark 4.1. Consider the special case where Y is a Hilbert space, p = 2

and U . ={ueL (I; ¥V): || ull‘l: < al. In this case the optimal control
ad 27t 2 -
u is characterized by the relation

-1
= -a A "K(uw) )

- 1 .
_ Il A K‘“)Ile(I; Y)

where A is the cannonical isomorphism of LZ(I; Y) into LZ(I; Y*) and

K(u) (t) = alko(u(t).t) - B*(t)p(t) a.e. t € I.

Now we give pointwise necessary conditions for optimality. Let U be
a closed convex set in Y and the admissible set Uad be given by

U_={uelL (I; ¥) : u(t) €U a.e. teTIl. (4.5)
ad P .

The next corollary follows from the Lebesgue density theorem.

COROLLARY 4.1. Let the assumptions in Theorem 4.1 be satisfied and U

ad
be given by (4.5). Then the condition (4.1) (resp. (4.2)) is reduced to the

pointwise optimality condition that for a.e. t € I,
<v - u(t), Blko(u(t),t) - B*(t)p(t)> 20 forall veU

¥, v+
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(resp. <v - u(t), - B*(t)p(tbY + ( ko(v,t) - kolu(t),t)) 20

Y*
for all v ¢ U ).

(Proof) The proof is. similar to that given in [2,p.290-291]. Remark-that
alko(u(t),t) - B*(t)p(t) and ko(u(t),t) are measurable and integrable on

W
I by 33 and H3.

Example 4.1. (Regulator problem) Let X and Y be Hilbert spaces with

inner products (, ) and <, >, respectively. We suppose U

Y ad
Lz(I; Y). The spaces X and X* are identified. The cost Jl is given by
Jl = (x(T),Nx(T)) + J (x(t) ,W(t)x(t))dt + EQ(u), (4.6)
. . I
where
E ) = % J <u(t),Q(t)ul(t)> dt. 4.7

I
In (4.6), (4.7) we assume that N € L(X), W(-) € L (I; L(X)), Q(*) € L _(I;L(Y))
; N, W(s), Q(s) are positive and symmetric for each s € I; there exists a

constant ¢ > 0 such that
< 2
u,Q(t)u>Y 2 clulY for a.e. t € I.

Under the above conditions it is verified that  EQ(u) is strongly continuous

and strictly convex in L2(I; Y) ([1,Chapter 31). Since J1 is also strict-

ly convex, there exists a unique optimal control for Jl. Then we have

COROLLARY 4.2. Let the cost Jl be given by (4.6), (4.7). Then there

exists a unique optimal solution (u,x) € L2(I; Y) X C(I; X) for Jl- The

optimal control u(t) is given by
-1
u(t) = Q " {(t)B*(t)p(t) a.e. tel,
where the pair (x,p) € C{(I; X) X C(I: X) satisfies the system of ecuations

70



0

dgét) = on(t) + I dn{s)x(t+s) + B(t)Q—l(t)B*(t)p(t) + f(t) a.e. t ¢ I,

~h
(o] 1

x(0) = g, x(s) = g~ (s) a.e. s € [~h, 0),

0 S .
—BE 4 aspt) + f dn*(s)P(t-s) - W()x(t) = 0 a.e. t eI,
at - =
{ p(T) = - Nx(T), p(s) = 0 s € (T, T+h],

in the weak sense.

The regulator problem is_véry important in System design and is investi-
gated in many references. We refer to the books [1,2,3] for infinite dimen-
sional systems without delay and [12,13] for finite dimensional retérded sys-
tems. The literature aealing infinite dimehsion#l retarded systems are few

[4,5].

5. Maximum Principle
The purpose of this section is to establish the maximum principle for the

time varying control domain with the éonvex integral cost

J=¢ (x(T)) + f (£ (x(t),t) + k_(u(t),t))dt. (5.1)
o] _JI 0 0 .
We assume the existence of optimal solutions for J and the assumption H:
in this and next sections. Let the admissible set Uad be
U.={uel (I; ¥) : u(t) ¢ u(t) a.e. te1l, (5.2)
ad P

where the (time varying) control domain U(t) < Y, t € 1 satisfies

H : (1) U(t) is closed and convex in Y for each t ¢ I;

4
(2) v U(t) is bounded in ¥Y¥;
teIX ' ‘
(3) for any t e I, v e Int U(t), there exists an €, > 0 such that
v e n G(s) for any 0 < € < EO.
selt,t+e)
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It is clear from H4(1),(2) that Ua

a is bounded and convex. Furthermore

we have the following lemma.

Lemma 5.1. Let H4(l).(2) be satisfied. Then Uad given by (5.2) is

weakly closed and weakly compact in Lé(I; Y).
(Proof) This lemma follows from Mazur's theorem and Eberlein-Smulian's theorem.

Remark 5.1. If U(t) varies continuously with respect to the Rausdorff

metric or U(t) is monotone increasing, then the condition H4(3) is satisfied.

By Lemma 5.1 and n;’, Theorem 4.1 holds for the admissible set (5.2). More-

over if H X C(I; X)

1 ad

for J in (5.1). We now give the maximum principlé for the cost J in

is satisfied, there is an optimal solution ux) €U

(5.1) which is deduced from the optimality condition (4.2).

THEOREM 5.1. let Uaﬁ be_given by (5.2) and H4

Uad X C(I; X) be an optimal solution for J in (5.1). Then

be satisfied. _ Let (u,x) €

max { <B(t)v,p(t)> - k_(v,t)} = <B(t)u(t),p(t)> - k_(u(t),t)
() (]
veU(t) . :
a.e. tel, (5.3)

where p(t) is given by
T
p(t) = - G*(T-t)d¢,(x(T)) - J G*(s-t)alfo(x(s).s)ds, t e I (5.4)
t

If X is reflexive, then p(t) in (5.4) belongs to C(I; X*) and is the mild

solution of (AS) in Theorem 4.1.

(Proof) Let t € (0, T) and v € Int U(t). Then by H4(3), the function
u(s), s €I~ (t, t+e)

vE(s) =
v, s € (t, t+e)
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belongs to Ua for any € ¢ (0, Eo]. From (4.2) and Lebeégué's density theo

da
rem we have by letting € + 0 that for a.e. t € I,

r

- <v,B*H(t)pl(t)>, , ¢ ko(v,t) z - <u(t).B*(t)p(tA)>Y."Y, + ky(u(t), ). (5.5)

Let t € I be fixed for which u(t) € U(t) and (5.5) holds. Since the

duality pairing <v,B*(t)p(t)>y, o, is continuous in v, we have from (5.5) -
o ’

‘that (5.3) is true for such t € I. The latter part of this theorem may be

obvious.

We shall give some applications of Theorem 5.1. We consider the special

cost functionals J2-J4 in Examples 5.1-5.3. Such costs are important in

practical applications and are studied in [1,9,14,15,16] for systems without

is given by (5.2) and H, is satisfied in each

delay. We assume that Uﬁd 4

examples below.

Example 5.1. (Special linearizgd Bolza problem) The cost J, is given by

2

J_ = <x(T),¥*> + J <x(t),¥*(t)>dat, (5.6)
2 0 1 1

where wa € X* and wi € Ll(I; X*) . Then we have

CORCOLIARY 5.1. Let (u,x) € Uad X C(I; X) be an optimal solution for J

2"
Then

JBX <B(£)V,p(t)> = <B(t)u(t),p(t)>  a.e. te I,

where p(t) is given by
v T .
p(t) = - G*(T-t)wa - J G*(s—t)wz(s)ds, t € I. (5.7)

If X is reflexive, p(t) in (5.7) belongs to C(I; X*) and satisfies
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SR8 4 asp(e) +I dn*(s)p(t-s) - yj(e) =0 a.e. tel,
-h

[

p(T) =- Y%, pls) =0 s (T, T+h)
in the weak sense.

Example 5.2. (Terminal value control problem) Let X be a~Hilbert space.

As usual we identify X and X*. The cost J3 is given by

=1 - x 12 ‘
3, =3 | x(T) xdl . x4 € X (5.8)

x C(I: X) be an optimal solution for J

CQROLLAR! 5.2. Let (u,x) €U

ad 3
in (5.8). _Then
max  (B{t)v,p(t)) = (B(t)ul(t),p(t)) a.e. t eI,
veU(t)
where p(t) is given by
P(t) = GH(T-t) (x, —x(T)), te I (5.9

The adjoint state p ¢ C(I; X*) in (5.9) satisfies
0

dp(t) + Aap(t) + { an*(s)p(t-s) = 00 a.e. teI
at J-h

p(T) = Xg = x(T), p(s) =0 s ¢ (T, T+h]
in the weak sense (p(t) may be identically zero).
Example 5.3. (Minimum energy problem) Let X and Y be Hilbert spaces.
The cost J is given by

4

J =I ()\zlx-(_t)lz + |u(t)|2)dt, (5.10)
4 1 Y
where A > O. Then we have

COROLLARY 5.5. Let (u,x) < Uad x C{(I; X) be an optimal solution for J4.
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max { (B(t)v,p(e)) - |v|]2) = BOu(®),pt)) - luw ]2 ae. te,

veU(t)
where T
p(t) = - J G*(s-t) (2A°x(s))ds  x* = X, tel

t

satisfies

: 0
—dple) , A (£) +J an*(s)p(t-s) - 2A%(t) =0 a.e. te I
~h

p(s) =0 s € [T, T+h)
in the weak sense.

6. Bang-Bang Principle
Let the admissible set Uad be given in Section 5. In this section we

consider the terminal value cost J given by
J=¢&an£_- ) (6.1)

where ¢o satisfies Hl(l) and H3(l). We investigate the possibility of the
socalled bang-bang control for J in (6.1) under the time varying control
domain Ukt). In general the bang-bang control does not hold for the retar-
ded systems even in finite dimensional space [17,p.60]. However by restric-
ting the cost J to the terminal value cost (6.1), we can prove that the
bang-bang control is possible under some regularity condition for the adjoint
system. Let X be reflexive in this section. Consider the adjoint system
(AS) in (2.11). We denote by p‘t; ag- QE) the mild solution of (AS).

Now we give the following condition
C.:q* =0 in X* follows from the existence of a set E ¢ I such that

meas E > 0 and olt; qa, ) =0 for all t : E. (6.2)

75



We say that the adjoint system (AS) is weakly regular if the condition C is
N w
satisfied. Examples for which the system (As) is weakly regular are given

in [9,p.41]), but such systems do not involve time delay.

‘Examgle 6.1.. Consider the control system (CS) enjoying the followin§
conditions i), ii) and ii):
i) Ao generates an analytic semigroup;
ii) the Stieltjes measure N 1is given by "n(s)

= '- X(_“'_'h] (S)Al;

iii) the system (CS) is pointwise complete for all t > O.

The condition ii) means that for any f e_L;OC(R+; X)

- cl { x(t; £,9) : gexx Lp,(Ih: X) } =x for each t >0,

where Cl M denotes the closure of M. If i),ii), ﬁi) are satisfied, then

the adjoint system of (CS) is weakly regular [10].

“The following assumption is needed in proving the bang-band principle.

H_: d¢o(xu(T)) #0 in X* for each u € Ua

where x (t) is the
S u .

dl
trajectory corresponding to u € Uad'

THEOREM 6.1. Let the cost J be given by (6.1). Assume that the adjoint
system (AS) is weakly regular and B*{(t) is one to one for each t ¢ I. 1f
HS is satisfied, then the optimal control u(t) for J in (6.1) is a bang-

bang control, i.e., u{t) satisfies
u(t) € V(L) a.e. t € I. . (6.3)

(Proof) This theorem is a consequence from the maximum principle (Theorem 5.1)

and weak regularity.

Example 6.2. Let the assumptions in Theorem 6.1 be satisfied and let X
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be a Hilbert space. We consider two costs J3 = %l x(T) - xdl2 and J5 =

(x(T),WO), wo € X. If there exists no trajectory X uce Uad such that

xu(T) = X4 ( wo #0 in X), then the optimal control u(t) for J3 (JS) is
a bang-bang control, i.e., u(t) satisfies (6.3).
Lét U be a convex set in Y. The convex set U is said to be strictl:s

convex if u, v, (u + v)/2 ¢ 30 imply u = v. The following corollaries

follow immediately from Theorem 6.1.

COROLLAR! 6.1. Let the assumptions in Theorem 6.1 be satisfied and let U(t)
be strictly convex for all t € I. Then the optimal control u(t) for J in

(6.1) is unique.

COROLLARY 6.2. Let the assumption in Theorem 6.1 be satisfied. ILet Y

be a Hilbert space and
U(t) ={uey: |u- y(t)lY Sr(t)}, terx, (6.4)

where y(-) € C(I; Y) and r(-) € c(x; R'™-{0}).  Then the optimal control
u(t) for J in (6.1) is unique and is given by
AS'B* (£)p(t)

u(t) = r(t) {y(t) + =3 } a.e. te 1,
IAY B*(t)p(t)lY

where AY is the cannonical isomorphism of Y onto Y* and

p(t) = G*(Tbt)d¢o(x(T)), t e 1.

(Proof) Notice that the nonvoid closed ball in a Hilbert space is strictly

convex and - U(t) in (6.4) is RHausdorff continuous in ¢t e I.

77



(11 J.
{2] N.
{3] Rr.

(4} M.
(5] P.
(6] K.
(7} K.
(8] s.
(9} A.
' [10] s.

TIIT7 R.
(12) M.
(13} J.
[14] H.
[15] A.
[16] A.
(171 J.

References

L. Lions, Optimal Control of Systems Governed by Partial Differential
Equations, Springer, 1971.

U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter S?s—
tems, North-Holland, 1981.

F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems
Theory, Springer, 1978.

Artola, C. R. Acad. Sci. Paris, 264, 668-671(1967).

K. C. Wang, SIAM J. Control, 13, 274-293(1975).

L. Teo, J. Optim. Theéry and Appl., 29, 437-481(1979).

L. Teo and N. U. Ahmed, Annali di Mat. Pure ed Appl., 122, 61-82(1979),
Nababan and K. L. Teo, J. Math. Soc. Japan, 32, 343-362(1980).
Friedman, J. Math. Anal. Appl., 19, 35-55(1967).

Nakagiri, Optimal Control of Linear Retarded Systems in Banach Spaces,
to appear, and J. Differential Equations, 41, 3495-368(1981).

5. Phillips, Pacific J. Math., 5, 269-283 (1955).

C. Delfour, Appl. Math. aﬂd Optim., 3, 101-162(1977).

S.- Gibson, SIAM J. Control and Optim., 21, 95-138(1983).

0. Fattorini, SIAM J. Control,. 6, 109-113(1968).

V. Balakrishnan, Applied Functional Rnalysis, Springer, 1976.

V. Balakrishnan, SIAM J. Control, 3, 152-180(1965).

K. Hale, Theory of Functional Differential Equations, Springer, 1977.

78




On the Existence of Periodic Solutions to Nonlinear

Abstract Parabolic Equations

Hiroko OKOCHI

Introduction.
This paper.conserns_with the nonlinear parabolic evolution
equation in a real Hilbert space H , which is of the form

(E) (d/at)u(t) € -3¢T(u(t)) + £(t) ,

ioc{]R; H), d_)t (t € R) is'a proper l.s.¢. convex

functional on H and 3¢° is the subdifferential of 6t :

where f ¢ L

Moreover we assume that both ¢(‘) and f(.) are T-perodic
(i.e. ¢™T=% , feem=£(t), t e R).
The existence of periodic solutions of (E) has been obtained

t  (see (A)~(C) in

by ﬁany aﬁthbré under some assunptions on 3¢
Section 1).

In this paper we consider the existence of periodic solutions,
assuming some conditions which differ from coercivity. We will
show the existence of periodic solutiopé.in case where 3¢ is
odd (Theéfem 1.1). - Next we will give examples to see that some
of the conditions} which are assumed in Theorem 1.1 or (C) in

Section 1, are essential as far as to obtain a periodic solution

of (E) (see Proﬁositions 1.1-1.3).
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1. Results
Let H be a real Hilbert space with inner product (.,.) and

norm | ||. We consider the existence of periodic solutions of"

(E;%,£)  (d/at)u(t) € -dd(u(t)) + £(t) .

HeXe ¢t, t €R, is a proper l.s.c.(lower semi-continuous) convex

t is the subdifferential of ¢t.

functional on H and 3¢

Moreover we assume that v

(1.1) both ¢%*) and £(.) are T-periodic and £ & LZ(0,T;H).
In this paper we call u a solution of (E) with_initial

value u if u e Co([O,w);H){W Wiéi((o,w);H), u(0)=u0 and

0
the relation (E) holds with u for a.e.t 2 0. On the otﬁer hand,
we call u is a T-periodic solution of (E) if u e-wiéi([o,w):ﬂ),
u(t+T)=u(t),t = 0, and the relation (E) holds for a.e.t 2 0.

The following conditions are known to be sufficient for the

existence of T-periodic solutions of (E):

(A) ( Benilan and Brezis [2], Nagail8], Yamada[1ll])
. 0.

(i) For each u, € D(¢° ) there is a solution of (E) with

initial value Yy

t t
l:'leP:';:f-Q-.(—x%{—_(:—ig-) =  uniformly in t & [0, T).
X

(i)
(B) (Haraux[5) or [Theorem 1 in Lecture 21;6])

(i) o= ¢ (tem).

(i) lim inf 2X)=¢(0) _ 5 o o
[x’-»ca 'xn
T

(ﬁi)S £(t)at = 0.
0
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() (Icorollary 11 in Lecture 20; 6 ])
(1) %= ¢ (tem).

(ii) 93¢ is a linear operator.

T
(iid) T-lg £(t)dt € R(3¢).
0

Our first result is the following:

Theorem 1.1. Suppose}

(1.2) ¢%=¢ (tem),

(1.3) ¢ is even (i.e. ¢(-x)=¢(x), x & H),
(1.4) £(t+)) = -£(t), te R.

Then there is a T-periodic solution of (E).

Remarks 1.1. The assumption (1.3) of Theorem 1.1 differs
from the topological condition (ii) of (B) (or(A)).
2. Condition (ii) of (C) is a special case of (1.3). In fact,
if (ii) of(C) holds then one has ¢(x) = 2 1)(2¢32/2x)2 for

172 (2¢9)1/2

each x & D(¢) (=D((3¢) )) , where denotes the

square root of self-adjoint operator ¢ (cf.[Proposition_2.7; 1.
3. In the case where both (1.3) and (1.4) hold, then we
. T

have T lg £(t)at = 0 € R(3¢) (condition (i) of (€)). To verify

0 T
this we first note by (1.4) that one has { £(t)dt=0. Next, by
: ]

the convexity of ¢ and (1.3) we get the equality ¢(0)= minH¢,

' which means that 0 & 3¢ (0) C R(3¢),
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On the other hand, if (1.3) holds then for each solution u
Cof :
(1.5) (d/dt)u(t) € -3¢ (u(t)),

one has the convergence

(1.6) s-lim u(t) € (3¢) *

toroeo

(0).

(In general it is known that a solution of (1.5) may fail to
converge strongly as t+ even if the set (8¢)_1(0) is nonempty.)
Moreover we can obtain. the convergence (1.6) for solution u of
(1.5) under the following condition ([4], [91);
fthere is a constant c > 0 such that ¢(-cx) £ ¢ (x)
(1.3)" y '
\,holds for each x € H.
This condition is weaker than (1.3).

We note that Theorem 1.1 does not hold if (1.3)' is assumed

instead of (1.3). In fact we have the following proposition:

Propesition 1.1. There are l.s.cT convex functionals ¢i
and ¢ on H and fl € L2(0,T;H) with property (1.4) satisfying
the following; ' .
{(1.7) Bﬁ is a linear operator (condition (i) of C)),
(1.8) ming ¢;= mingy = 0 and there is a constant cy21 such
that ¢(x) < ¢l(x) ;_ClW(X) holds for x & H, but
(1.9) there is no periodic solution of the equation (E) with

$"=¢, ana £=z, .
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vRemark 1.4, ¢; and -fl satisfy (1.2), (1.4) in Theorem 1.:
and the above-mentioned (1.3)'. 1In fact, if both (1.7) and (1.8)
hold then it is seen that ¢l satisfies (1.3)'. To verify this
we note that Y is even whenever (1.7) holds (see Remark 1.2).
Thus we have only to see that, in generai, if (1.8) holds with
functional ¢l and even convex functional Y then (1.3)' holds
with ¢ = ¢l and c = l/cl. Since ¥ ié a even convex functional,
one has w(0)=minH V. Hence,,using (1.8) and eveness and convexit
of ¢ again, one has B
cl-l

1
CIU) (—c'I—O + -é—lrx)

©

[
N
L
\

' l‘ 1
S c¥(=- ==x) = c,¥(==x)
1 ¢y 1 ¢

]

A

Gt 1
cl{—q\P(O) + E—J?w(X)} vix) < ¢, (x)

for x € H. This estimate means that ¢, satisfies (1.3)' with

c = l/cl.

As is seen in Remark 1.3, condition (i.4) yields that
T
(1.4)' 5 f(t)at = o.
0

We note that Theorem 1.1 does not hold if one supposes (1.4)"

instead of (1.4). In fact we have the following:

Proposition 1.2. There are l.s.c. convex functional ¢2 and
i, E:LZ(O,T;H) satisfying (1.3), (1.4)' and the following;
{there is no periodic solution of the equation (E) with ] =¢,
(1.10) ) .

an§ f=f2.
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Finally we consider the following condition;

(1.11) ¢%F =y + Iece)’ t e [0, T)

with

(1.12) 3¢y is linear ((ii) of(C)), and

(1.135 K(t), t € [0, T), is a closed linear gubspace of H.
Here Iy ., denotes the indicator functional of KX(t), i.e.,

(o if x € K(t),
Ip oy X = :
K(t) \_w otherwise.
This condition is a'generalization of assumptions (i) and (ii) in(C).

We have the following:

Proposition 1.3. There are l.s.c. convex functionals ¢§
(t € [0, T)) and f,¢ L%(0,T;H) satisfying (1.11), (1.12),(1.13)

and the following;
_ (T £
(1.14) T f3(s)ds =0 € R(3) for t &[0, T) ((ii) of (C)),
0 ;

(1.15) for each uoeacl(D(¢o)) {(=K(t)) there is a solution

1,1

u e W 'T(0,;H) of (E;¢§,f3) with u(0)=u, .

(1.16) there is no periodic solution of (E;¢§;f3).
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2. Proof of Theorem 1.1

For each a & D(¢) there is a unique solution u, of (E)
with initiél value u(0)=a. We define a single-valued mapping S
by sa = u(T) for ac D(9).

To show that S has a fixed point in D(¢) we use the

following fixed point theorem;

Theorem A (Browder and Petryshyn [3]). Let S be a
nonexpansive selfmapping of a nonempty closed convex set C of
H . Then S has a fixed point in C if and only if for any
X €& C the sequence of Picard iterates {xn} starting at Xq (i.e:
X4 1=5%, ) is bounded in H.
We have only to prove that for some ug & D(¢) the seguence
‘of Picard iterates {un} starting at u, " is bounded. To show
this we extend f on [b,w) by fYt)=f(t—[t/T]T) and let u be
the solution of (E) with arbitraly initial-value ug - Then the
definition of {un}' means that u =u(nT), n 3> 0. Hence it is
sufficient to show that the set {u(t): t > 0} is bounded in H .
In what follows we will show the boundedness of {u(t): t > 0}.
We first note by (1.3) that +he relation 99 (-x)=-3¢(x) holds

for each x &€ D(3¢). Hence one‘has the relation
u' (£)-£(t) € -36(u(t)) = 3¢ (-u(t))

for a.e.t 2 0, where u'(t)=(d/dt)u(t). Therefore, using (1.4)

and the monotonicity of 3¢ , we have

- - -
L2l + u) 2 = 200 (42 Im)sur (1), wes2~ I 2u (o))

2(u' (e+27 ) o (er2 I bt ()£ (), uiz+2 IT) = (~u(t)))
85
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for a.e.t Z 0.- Hence
(2.1) fu2 imrae)l € fu@Imsa0)f (=c)), t >o.

On the other hand condition (1.3) also yields that 0 & 3¢(0).

Hence one has

%Eﬂu(t)ll= () 17t (8), u(e))
(2.2) = Ju(t) 71 (ur (£)-£(£) =0, u(£)=0) + (£(t), u(t))}
< fue) Mo + B fue) i} = f£wl

for a.e.t 2 0. Therefore we have

_1 t+27 1 274
(2.3)  Ju(e+2 1)~ fu(e)l € - |If(s)flas = £(s)tas (=c,)

t 0 -

for t > 0.

Now we assume that the set {u(t): t » 0} is unbounded.

Then there is the sequence {tn} in [0, =) defined by

t, = inf {t > 0: Ju(t)| = n}.

Note that one has
(2.4) Jals) | < Jluce)l =n, 0<s <t

for each n €N . Moreover it follows from (2.2) and (1.1)
that tn 4+ ® as n-oe,

Fix an arbitraly ne& W with t, = 2_1T . Let v(t)
(t.e [tn-Z—lT, «)) be the solution of the initial-value problem
((a/at)vit) € -as(v(t)), t3>t_-270T,

-1 -— I -lrn
1V(tn‘2 T) = u(t..n 2 4.) -
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Then one has estimates

n jae = {27
(2.5)  Jvit)-u(t )] < _;, I£t)hat = £(o)fat (=c,),
Iveen S A o 2
and
(2.6) . 6(v(t)) S olv(t)),  t& [T, t).

We note that (1.3) and (2.6) together yield that

(2.7) (V(tn), v'(s)) £ =(v(s), v'(s)) a.e.s é:[#n-Z_lT, t
since by the definition of subdifferential one has

(=v(t )-v(s), -v'(s)) £ ¢ (=v(t ))-¢1v(s))

.= ¢(V(tn)) - ¢(v(s)) <€ 0.
By (2.7) and (2.4) we have _
: ' -1 tn |
(v(tn), v(tn)-V(tn-2 T)) = . —Z_lT(-V(tn)’ v'(s}))ads
. n .

- (t
n !
(2.8) S y _z_lT(—Y(s), v'(s))ds

= 2 v 22 - e 12

. - 1. 1 42 g =12
L lem2 i 12 = 27 e 2 im 2 € 27102,

A

Put y=v(t )-u(t)) and z=v(tn-z‘lr)+u(tn) (=u(tn-2‘1T)+u(tn))
Then estimates (2.1)and (2.5) yield that jyj < €, and izt x ¢

respectively. Hence
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-1
(V(tn), V(tn)-v(tn—Z T))

= (u(t_)+y, u(t )+y+u(t );zi
(2.9) n n n

\v

2l|u(tn)ll2 - (cl+c2)ﬂu(tn)ﬂ - c2(c2+c1)

2
2n°® - (cl+c2)n - c2(c2+c1).

Now by (2.8)and (2.9) one has

2 -1 2
2n¢ - (cl+c2)n - cz(c2+cl) €2 "n" .,

Since ¢, and c, are independent of n , this estimate is a

Therefore the set {u(t): t > 0} is bounded. -

contradiction.
Consequently applying Theorem A we conclude that there is

‘a periodic solution of (E).
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A CHARACTERIZATION OF THE M-ACCRETIVITY

.Taeko Bhigeta’
Department -of Mathematics,

Tokyo Metropolitan University

X and Y deno£é Banach spaces with the norm ||-]jx and |-}y -
We omit X or Y in the norﬁ if coﬁfué&pn does not occur. X" |
denotes the second dual Space’of X. |

First, for multi-valued operator A:X + Y, we shall define its
v(*)-derivative GA(x,x'):‘X"-*Y at (x,x') é the graph of A,.thch

is a generalization of Giteaux derivative in a certain sense.

'Using this derivative, we characterize the m-accretivity.

1. Definition of (*)-derivative 7
Throughout this report, we denote-by (ha}’ a directed family
of positive.ﬁﬁmbers which tends to 0. We shall dé%ine (*)-
derivative 6A(x,x'); X" ~+Y at (x,x') éithe graph of A as follows.
We defineréA(x,x')za y for ze¢ X", yeY, if there are a LipScBitz
continuous curve v(t) € D(A) and a C'-curve w(t) € Av{(t) on {0,T)

for some T > 0, such that

V(hu)-x
(1.1) w¥-lim 5 =z in X" for some {ha}’
a a
1im MBI wr0)) =y dn v

h+0

REMARK 1. As direct consequences we have:

v(0) = x and w(0) = x' for v(t) and w(t) in the above.
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D(6A(x,x')) is the set of all the elements z in (1.1).

If SA(x,x')z 2 y, then SA(x,x')(az) » ay for every a 2 0._

REMARK 2. Iﬁ general, 8A(x,x') may be a multivalued operator.

REMARK 3. If A is single-valued and A(x + ty) is defined and
C1-c1ass in t on [O,to) for sufficiently small to > 0, then

d+
6A(x,Ax)z dtA(x+ tZ)It?0°

EXAMPLE. Let 2 be a domain in R" with c?% class compact
boundary. We take X = C2'%(2) and Y = c®(w). We consider the following

following elliptic operator with the obligue boundary condition;

n ou :
Aes B fay(XrusDuiDigu v Blx,u,Du) (Dyu=gy ,Du=(Dyu, 4D u)),
=

D(A) = {u € c?'%(Q); c(x,u,Du) = 0 on 3Q)

where aij' b € Cz(QxRan), c € C3(QxRan) and satisfy the

following assumptions:
X .
aij(x'y'Z)giEj 2 A(”Y”l“z”)lgl > o'.
ICy(X,y'Z)I > K(”Y”'”z”) > 0 on 94,
le, (x,y,2)-v] > xdlylllizl) > 0 on 2%,

where v is an outer normal vector from . In this case, D(A) is not
necessarily convex nor open, and therefore A is not Gateux diffexw
differentiable in general. But A has a linear (*)-derivative

8A(u,Au) for every u € D(A):

SA(u,A =Z(D_a..){x,u,Du)D, .
(u,Au)v i'; v3ij {x,u,Du) iju

+ I (Dz aij)‘lx,u,Du)DijuDkv + Dyb(x,u,Du)v
i,3.k 7k 91



+ L D b(x,u,Du)D v.
x 2k k™"

D(SA(u,Au)) = {veC2r%D); D c(x,u,Du)v + Dzkc(ux,u,DU) .

+ T D c(x,u,Du)Dkv = 0 on 9Q1).
k %k

2. Theorems and proofs

THEOREM‘1. Lét A: X + Y be a closed (multi—?alued) operator’
with a~! single;valued. Let L be a non—negétive constant. Then
the following three conditions are equivaient.

1°) R(A) = Y and Il A 'x - A""l_yHx sLllx - yHY for every x,
y € Y. '

L'H.yHY for every

WA -

2°) R(6A(X, x')) = Y and ||6A(x,x") " 'y||

X
x € D(A), x' € Ax and y € Y.

Y and || 6a(x,x")yll = Lilylly for every

A

3°) R(GA(x, x))

xe D(A), x' ¢ Ax and y ¢ R(GA(x,x')i.

REMARK 4. 1In order that Theorem 1 holds,  w{t) need only
be differentiable on [0,T]) with ||w'(t)]] upper semi-continuous

for some positive T in the definition of (*)-derivative.

Proof of Theorem 1. "1°) implies 2°)". Let x ¢ D(A), x' e Ax

and y ¢ Y. We put v(t) = A-1(x' + ty) and w(t) = x' + ty € Av(t).

Then it holds II%(v(h) x)}|| s L. Therefore, we have

. 1
w*;llg 7 (vihg) - x) = z for some {ha} and z € X'. This fact implies
3 ;
o a
that 6A(x,x')z > w'(0) = y. Hence, we have that R(6A(x,x')) = Y.

On the other hand, suppose that 6A(x,x')z = y. Then, there
are a Lipchitz continuous curve v(t) € D(A) and a C -curve

w(t) € Av(t) with w*-lim p~(v(hy) - X) = z for some {h} and
h +0 ¢
- ~ o
1lim Tiwhy - x") = Y- Since 27V is single-valued, we have that

h+0 h
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1,,-1 -1, Awh ) -t
Hh—lt;(v(ha) - 2= IR T wih) - AT Ix s Llighiwing ) - xv)

Letting h, + 0 in the last inequality, we obtain that Hzll s
Ll yll- | |
"2°) implies 3°)". This is trivial.
To prove "3°) implies 1°)", it suffices to show the following

lemna.

LEMMA. Let A: X + Y be a closed (multi-valued) operator.
Let xo € D(A), yy € Ax), Lz 0, r > 0 and y*¢ B (y,), where
Br(yO) is the open ball of radius r centered Yo- If A“1 is

~ single-valued on R(A)n ijyg), then the f_ollowinj 3°) implies 1°)°'.

1°)' y* e A(B o (x.)).
Lily -y, ll**o
3°)' y* -y ¢ R(EA(X, 37) and ll6atx,y) "2l = L]z

for every x ¢ D(A)"BLr(xo)_! y e'f\anr(yo) and z¢ R-(GA(X,})).

Proof. Let € be an arbitrary number such that 0 ¢ 2¢ <
r - ly* - y,ll.
1) First, we show that for arbitrary a » 0, x € D(A) N
. 1
BLr(xo) and y € Ax A Br(yo), there exist h ¢ (0, i_a')' x' ¢ D(A)

and y' € Ax' which satisfy the following;

(2.1 lx"- x|l s nLaallyx - y| + £,
' . he
(2.2) liy' -y - naty* - y)|) « 2E,
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From the assumption 3°)', there exist 2 € X" and y" € Y such that

(2.3)  ly"- yll <=5 and
' 2a

aly" - y) € R(6A(x,y)).

" Therefore, there are a Lipshitz contindqus curve v(t) € D(A) and a
C1-curve w(t) € Av(t) with w(0) = y and w'(0) = a(y" -'y), on

[O,h'l’for'some-h"> 0. Thus, there exists h s min{h', g;} such that

" te
lwit) - y -ta(y" - y)ll <« 2a !’

o6 - aty” = pll < 5
fgr 0 s t s h. Hence, using (2.3), we have that
(2.4)  flwit) -y - taty* - p)|] <« &,
(2.5)  Jlw'(t) - aty* - || « £
for 0 st s h. From the definitién.of Giteaux derivative, for each

t with 0 s t s h, we have {h } such that

SA(V(t), w(t))w-lim ~(v(t + h_ ) - v(t)) ® w'(t).
« Ba o '

Thus, by the assumption 3°)', it follows that

.1
(2.6) llw*ﬁltm;i!(V(t + hy) - vit))]l s Lilw'(t)]| for o =t sh.
Let £ € F(v(h) - x). The mapping: t + (v(t) - x, f) is Lipschitz

continuous of [(0,h} to R. Therefore, it is differentiable a.e. t

and satisfies the following;
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2 h 4
(2.7)  llvin) - x||? - J Lvit) - x; frae
o.
s hL(ally* - y]|| + g)”v(h)- x||.

In the last inequality, we used (2.5) and (2.6). Hence; if we set
x' = v(h) and y' = w(h), then (2.7) and (2.4) imply (2.1) and .
(2.2) respectively. |

2) Let 2 be the first uncountable ordinal number, and W"be
the well-ordered set {a; a ¢ Q1. we shall define h,z 0, X, €
D(AJ«x BL?‘*O) and Yo € Axc N Br(yo) by transfinite_induction,
and we put t = | hg .

Bsa

(1) We set h, = 0.

0
(2) Let ¢ € W. Assume that hB' xse: D{(A) and Yg € Ax8 has

already been defiﬁed for B < a such that
1V .
(2.8) 0sh, s5(1-Zh,) if B> 0,
- g = 2 Y<B Y
(2.9) ”xB - xYH 5 Litg - tY)(”Y*- you + 2¢) for y s B,
(2.10) Jl(1- t M yg - ¥*) - (1 - tp)ly, - v |

We note that if tﬁ < 1, then (2.10) is equivalent to (2.10)';

(2.10)° ”‘Y8° y*)/(j - tg) - (yy - y*) /(1 - tY)H s 2e(tg -ty
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for vy s B. We also note that (2.8) and (2.9), (2.10) with Y=0
yield the following inequalities;

05ty s,
(2110 lxg= xoll segtlly* - voll + 2¢) « Lr,
(2.12) ‘HyB- Yoll s tgtlly* - voll + 2¢) o,

(2.1;) “yB - y*|| s (1 - tg)lly* - yoll +'2et8) (1 - to)r.

Therefore, it follows that x8 € D(A) n BLr(xo) and Yg € AxB-
Bn(yo). ¥We define hn' X, and Yq in two cases.
<1> In case that a = ¢™ + 1 with a'¢ W, we further consider

two cases.

x , and y = Yy

(a) If ta' = 1, then we set hu =0, x o

P) If t,, <1, then we set h = h, x, = x' and Yo =¥ in

1) with a = 1/(1 - tu')' X = X and y = Yor- Then it follows that

1
0 < pc <3 (1 - tu.), 0 <« ta < 1

’

(2.14) ixg = xull s hL{]ly* - Yorl10 - €00 v etr - ¢ Ly,

. .
(2.15) llyg = vgr - 79=ty* - y Ml < he€(1 - ¢ 1)
a

We shall prove that (2.8), (2.9) and (2.10)' hold for B = q.

(2.8) is trivial. From (2.13) with 8 = o' and (2.14), we have

(2.16) ”xu- xgoll s h L({ly* - Yoll + 2¢e).
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From (2.9) with B = «¢' and (2.16), it follows that (2.9) holds

. 1-t_,
for B = a. Since hu< 2(1 -t .), we have bhat a s 2.
Therefore, we have from (2.15) that ,
Y, -Y* ¥, i-y* h e(i-t_,)
(2.17) ”f_t -l 5 ——— s 2he.
a o a .

From (2.10)"' with B = a' and (2.17), it follows that (2.10) holads
for B = a. Hence, we can continue induction.

<2> In case that ¢ is a limit ordinal number, we set hu = 0.
Then, it is easily seen that t = sup tB. Let 8 ¢+ a as n + =, It

a B<a n
follows from (2.9) that (xB } is a Cauchy sequence in X. From
. n .

(2.10) with v = Bm s B =B nfort, <1, or withw¥= 0 s 8 = B for
ty = 1, it follws that {yB } is a Cauchy sequence in Y. Hence,

there are X, € X and Yo € Y such that

xBn * X, in‘x as n =+ O,.an* Yo in Y as n » =,
Since A: X + Y is a closed operator, the above convergences imply
that X, € D(A) and Yo € Ax,. Also from (2.9) and (2f10), ﬁe see
that X and Y, are independent of the choice of a subseqqence
{Bn}. Letting 8 ¢+ ¢ in (2.9) and (2.10), it follows that (2.9)
and (2.70) hold for B8 = a. Since (2.8) is trivial, we can
continue induction. ‘

3) WVe set t* = sup t {s 1). Since t is nondecreasing as to
@, we can take a non;::rea51ng sequence (un} in W such that
t“n t t* as n + ®», Since e, is nondecreasing, @, converges to a
ordinal number a* as n + o. Noting that a, ¢ 2, and that 9 is an
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uncountable ordinal number, we have that a* ¢ &, i.e., a*t ¢ Ww.
Therefore, it follows that t* = t ,. If t* ¢ 1, we have from 2)
(2) ¢1> (b) that t , ., =t . + h°*+1 > tou . Wwhich contradicts
the maximality of t , , because a* + 1 ¢ W. Hence, we obtain that
t* = 1. From the definition of t , we easily see that there is a
sequence {8 ) in W such that tB; ¢1and tg; + 1 asn-~ ®,

n
- Letting n + ® in (2.13) with B8 = Bn' we have that

(2.18) Yg * y*in Y as n + =,
n

From (2.9) with 8 = Bn y Y = Bm for m s n, we have that {xB } is
n

a“.Cauchy sequence in X. Hence, there is X € X such that

(2.19) x8n+ xe’in X as n f o,

Since A: X + Y is a closed operator, (2.18) and (2.19) imply that
x. € D(A) and y*¢ Ax . Since A"l is single-valued on R(A) A

B (yg), x* = x. = A-1y* isﬁniquely determined. From (2.11), we .
have that

fx* - xoll s Tlly* - ygll + 260

Letting £ -+ 0, we have that x* € BL"Y* I(xo), which completes

"Yol
the proof.
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The next theorem, which is the purpose of this report
follows immediately from Theorem 1.

THEOREM 2. Let A be a closed operator in X with (I + AA)""
single-valued for suff%ciently small X > 0. Then the following
three conditions are eq;ivalent. '

1°) A is m-accretive.

2°) R(S(I + MA)(x%,x') = X and [[6(X+ AA)(x,x")z]| 2 izl
for sufficiently small A > 0, Yx ¢ D(A),"x' ¢ Ax and

Yz € D(6(I + AA)(x,x')).

3°) R(S(I + AA)(x,x')) = X and ||6(I + AA) (x,x')z]l 2 |lz]]
for sufficiently small X > 0, Yx ¢ D(A), Yx' ¢ Ax and

Yz € D(&(I + AA)(x,x')).
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Existence of Solutions t0 Second Order Semilinear

Differential | Equations
Kenichi Fukuda

I. Introduction We shall consider the problem
(1.1 v (4 a0+ Ay A u = f), wWO)=¢, u )¢

in a Banach space X , where A, (i= 1,2) is the infinitesimal

generator of a Co—semigroup Ti(t) and f is continuously GBteaux
differentiable on X .

One stnadard approach to the second order equation of a form

(1.2) u? +Au‘+ Bu = flu), uw0)=¢, u(0)=¢ ,

is to reduce it to a first order system in some space x;Ex X, whére
Xp (C X) has an energy norm. One disadvantage to this approach
is that the space XE depends on the particular-equation and it

is not easy to find a suitable norm.
Qur approach is to factor the problem(l.2) into the form of

(1+41) and then reduce it to the first order system

Y I R | T

ats u2 o A2 u2 f(ul)

in ZX X . While this method mey at first seem ummatural, it use-

1.3)

fulness will be demonstrated by applying it to a large class of e
equations(semilinear version of wave equation, stroag damped and
damped, telegraph equatioas and etc.) using only the quadratic
equations. Moreover, the factoring procsdure eliminates tne need
to find an energy norm suitable to the problem. |

Qur aim is to discuss the existence of strong solutions Heo~
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to (1l.1).
Continuous function u(t) is said to be a mild solutioa to (1.1)
if itsatisfies

t

u(t) = 1,(t) ¢ +S T b= T)I, TN - Ayp) dt
0

+ go SOTl\t-'c)T2(1:-s) f(u(s)) dz ds, ¢5eD(A1) .

We say that a function u(t) is a stroang solutioa to (1.1l) if it

satisfies
(1.5) ult) € CT(I;X)n CiI:D(4y)),

u () - Ajuit) € CH(I:X) 4 C(1:D(4,)) ,

1

and »
\1.6)  (§ — A)\§p — &) uit) = flut)), tel.

The existence of strong solutions is discussed in[3 Jin the case
‘that a mild solution u(t) and f(u(t)) is twice continuously differ-

rentiable- through tedious calculations.

II. Main results Throughout this paper, F is coatinuously
G2teaux differentiable on X and satisfies (H1) or (H2); |
(H1) For any r> 0 there exists Lir) such that |[fix) - £(y)]
€ r) Ix-y| for IXI,\ngr. _
(H2)v For any x in X there exists a neighborhood of x on which
f is Lipschitz continuous.

Nild solutions to (1.3) is defined througn the equation

t - .
5 '[“1 _ B0 T, (t-8) u,(s)

(2.1 + ds ,

u, T,(t)u,(0) o |To(t-s) w (s)

Mild solution u(t) of (l.4) is obtained by el minating the second
component of (2.1). Coaversely, ul(t)= u(t) and 'u2\t)
t
= Tout)iy - A1¢) + SO Tovt-s) flufs)) ds satisiy (2.1).
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To consider the existeace of mild solutions, we shall mention

Theorem 2.1 Suppose that A 1is the ianfinitesimal geaerator

of a Cy-semigroup aad F satisfies \H1) or (H2). Let y(Uo) be

the maximal time of existeace of mild solution to U(t)

= [A + F]UWt), U(0)=U, . Thea we have

(1) If J(Uy) < @, thea lim, AT, )liU(t)N =R,

i <
( respectively, if S(U ) <o, then ' 11m U(‘f)l S<€<J('u~c_))

—

\U ) t<si3(

2) Jy) < um JO) , D=}V [t <FWf
: v—=>U
(6]
The proof of this theorem is demonstrated in [[Ja.nd [é].
Applying this results to (1.3) and (2.1) aad eliminatiag the

second component, we have

Theorem 2.2 Let J@,¥) De the maximal time of existence
of solution wu(t) to (1.4). Then we have

(1) If § @, <, thea lim puit)fl =R,
' J¢ ;0 t?‘j\¢v‘() )

esp, i @, X, i u < ’ =
(r spv_ if (8,9 < t%ﬁqu)#) 4843\95 2&) ($)|s < <¢ V’)j # )

From Theorem 2.1 , we can define a local semiflow\ or semi-

group ) S(t) by letting S(3) Ty = Ut), D\o\t))cD , Where U(t)
is a mild solution to-g-%U\t) = [a + FJ]Ut), ULO)=T 0 *

The next result is obtained ia [2 )
Theorem 2.3 Let A Dbe the iafinitesimal generator of a

C.—semigroup aad F Dbe continuously Gateaux differentiable on X.

0
Then we have

(1) S(%t) is coatiauousiy G&teaux differentiable on D(S(%)).
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i2) S(t)Uo \er D\A)) is & Cl-solu‘cion to
Se ULt) = [a + FJULt), UO) =T

and . satisfies

N R
&t Sgt)UO~db\t)\Uo) fa+ 2] U

=[a+ Flai)u, .

The differentiability of UH>S\t)U is also discussed in tﬁand
[L£] ia the conditioa that F is continuousl/ Préchet differen-

tiable. on X .

1
O. A2 u, ftul)

It is trivial that [:A 0 |and [u u, satisfy  the
the assumptioris of Theorem 2.3 . So we can apply this to our
problem.

we now discuss strong solutioas to (1.1l), The following
theorem is anounced ia[3].

Theorem Suppse that u\t)eCZ(EO,T]:X) and satisfies
{l.4) . Also assuﬁe that :t‘\v('l:))éc2 whenever 'v(‘t)&C2.

Then ult) is a strog solutions (1.1) forﬁeD\AzAl) and‘%éD\Al).

Howevar, the zssumptions of th_is»‘.T:heorem gre seem 1o be rather
strong and the prcof is completed after tedious calculations. So
we apply Theorem 2.3 and then have

Theorem 2.4. Assume that A1 and A2 are infinitesimél gene-
rator and f is continuously G2teaux differentiable on X.

If ﬂseD(Al): ¥ ‘A,¢6D(A2) then a solution to (1.4) is a strong
solution (1.1). _

Mgm_z___J_., Under the same assumption as in theorem 2.4.,
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the equation (1.1) has a unique strong solutions on the maximal

interval of existence of solution to (1.4).

We can prove these theorems through applyinp theorem 2.3,

and eliminating the second component from (1.3) and (1.4).

III. Examples We now consider the several applications. All
of the examples will be done in compiex Hilbert space LZ( Q),
where 2 is either a smooth bounded region in R" or all
of R" . For details, we reffer to [3].

Example 3.1. The semilinear telegraph equation

(3.1) U, -'-‘c:Lut ~ Au = f(u) “(a>0)

in LZ(RB ( or LZ(Q) , where Q@ is smooth bounded in Rp).

Example 3. 2. The strongly damped equation

(3.2) wu,, + aAut; “Au = f(u) (¢>0) u(0)=4. u (0)=y

tt
in LZ@®Y)

Example 3.3. The strong damped equation in one demention

(3.3 ) Uy, tau, — U = f(u), a €R , x €R,

u(0.x) =¢(x),u, (0.x) =v(x), ¢,veL’(R)

Other examples ¢re mentiped in [3]
°
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