2015年度後期中間試験問題·数学B(S3)

- 1. 次の各問いに答えよ。ただし、 答のみ。 (25点)
 - (1) $k \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & b \\ 2 & a & c \end{pmatrix}$ が直交行列になるように実数 k , a , b , c の値を求めると, k = [1] , a = [2] , b = [3] , c = [4] となる。
 - (2) R^2 上の線形変換 $f \circ f(\mathbf{p}) = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix} \mathbf{p} \ (\mathbf{p} \in R^2)$ とするとき,直線y = 3x + 2 のf による像を求めると,y = [1]x + [2] となる。
 - (3) \mathbf{R}^2 上の線形変換 f , g の表現行列をそれぞれ $\begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$, $\begin{pmatrix} 3 & 1 \\ 4 & -1 \end{pmatrix}$ とすれば,合成変換 $f \circ g$, $g \circ f$ の表現行列はそれぞれ [1] , [2] となる。また逆変換 f^{-1} , g^{-1} の表現行列はそれぞれ [3] , [4] となる。またベクトル $\mathbf{p} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ の $g \circ f$, f^{-1} による像はそれぞれ [5] , [6] となる。
 - (4) \mathbf{R}^2 上の線形変換 f の表現行列が $\begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix}$ であるとき, f によって直線 y=x+2 に移されるもとの図形の方程式を求めよ。
 - (5) 空間内の点を y 軸のまわりに $\frac{\pi}{4}$ だけ回転させる線形変換の表現行列は [1] である。 またこの変換による点 (2,3,1) の像は [2] となる。なお、回転の 向きは z 軸正から x 軸正へ向かう回転を正とする。
 - (6) R^2 上の線形変換f によるベクトル $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ の像が それぞれ $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ であるとき,f の表現行列は $\begin{bmatrix} 1 \end{bmatrix}$ である。またf によるベクトル $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$ の像は $\begin{bmatrix} 2 \end{bmatrix}$ となる。
- 2. \mathbf{R}^2 上の線形変換 f の表現行列を $A=\begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix}$ とする。また f による直線 y=2x+1 の像の方程式が 2x+15y+8=0 であるとき,次の各問いに答えよ。ただし,a ,b は実数の定数とする。 (17点)
 - (1) *a*, *b* の値を求めよ。
 - (2) f による像が f 自身であるとき、f の方程式を求める次の計算の
 - [] に入る最も適切な答えを解答用紙にかけ。ただし、 答のみ。

注意:a,b は(1)で求めた値を使うこと。つまり解答に文字 a,b を用いてはいけない。原点を通る直線は y=mx (m は傾きを表す定数)か,直線 x=0 である。x=0 の f による像は直線 [1] であるから自分自身には移らない。y=mx 上の任意の点を P(x,mx) とし,f による P の像を P'(x',y') とすれば x'=[2],y'=[3] ([2],[3]はx,mの式) y'=mx' を満たすから m の 2 次方程式 [4]=0 が導かれる。これを解いて m=[5]

- 3. 原点のまわりの xy 平面上の角 $\frac{\pi}{4}$ の回転によって、方程式 $xy = a^2$ (a > 0) で表される図形はどのような図形に移されるか。その方程式を求めよ。(6点)
- 4. R^3 上の線形変換 f とベクトル $\mathbf{v} \in R^3$, $\mathbf{v} \neq \mathbf{0}$ について, 次の各問いに答えよ。 ただし,
 - (1),(2)は 答のみ。(7点)
 - (1) ベクトル **a** を位置ベクトルとする点 **A** を通り、**v** に平行な直線 l のベクトル方程式をかけ。 ただし、この直線上の任意の点の位置ベクトルを **p** 、媒介変数を t とせよ。
 - (2) \boldsymbol{p} のf による像 \boldsymbol{p} ' を \boldsymbol{a} , \boldsymbol{v} のf による像を用いて表せ。
 - (3) f の表現行列が $A = \begin{pmatrix} 1 & 4 & -2 \\ 3 & 1 & 5 \\ -4 & -13 & 5 \end{pmatrix}$ であるとき、(2) の像が 1 点となるためのベクトル \mathbf{V} を求めよ。 $\begin{pmatrix} \mathbf{V} \neq \mathbf{0} \end{pmatrix}$ という条件は満たす $\begin{pmatrix} \mathbf{V} \neq \mathbf{0} \end{pmatrix}$
- 5. $f \in \mathbb{R}^3$ 上の線形変換で

$$\boldsymbol{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\boldsymbol{a}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\boldsymbol{a}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\boldsymbol{b}_1 = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$, $\boldsymbol{b}_2 = \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$, $\boldsymbol{b}_3 = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$ に対して

 $f(a_i) = b_i$ (i = 1, 2, 3) を満たすものとする。このとき、次の各問いに答えよ。(20点)

(1) ベクトル
$$\mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 の線形変換 f による像を求めよ。

(2)
$$f$$
で $\mathbf{d} = \begin{pmatrix} -1 \\ -3 \\ 9 \end{pmatrix}$ に写される \mathbf{R}^3 のもとのベクトルを求めよ。 (以上、お茶の水女子大)

- (3) \boldsymbol{a}_1 , \boldsymbol{a}_2 , \boldsymbol{a}_3 は明らかに線形独立だから,基底 $\mathbf{A}' = \left\{ \boldsymbol{a}_1$, \boldsymbol{a}_2 , $\boldsymbol{a}_3 \right\}$ に関するf の表現行列 A' を求めよ。
- 6. A が直交行列であるとき次のことを示せ。ただし、成分はすべて実数とする。(10点)
 - $(1) |A| = \pm 1$

(2)
$$A$$
 が 2 次であるならば $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ または $A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$

7.
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 を $f(\mathbf{x}) = A\mathbf{x}$, $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$, $A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 3 & 4 \end{pmatrix}$ で定義される線形写像と

する。ただし、fの表現行列 A はそれぞれ \mathbb{R}^3 , \mathbb{R}^2 の標準基底に関するものとする。このとき次の各問いに答えよ。(15点)

(1) 次の文章の[]に入る最も適切な答えを解答用紙にかけ。ただし、答のみ。

$$\mathbf{x} \in Kerf \Leftrightarrow A\mathbf{x} = \mathbf{0}$$
 だから、 $\mathbf{x} = {}^t(x_1, x_2, x_3)$ とすれば消去法から $A \to \begin{pmatrix} 1 & 0 & [& 1 &] \\ 0 & 1 & [& 2 &] \end{pmatrix}$

 $\therefore x_1$ =[3] x_3 , x_2 =[4] x_3 従って $\dim Ker f$ =[5]で、1組の基底は t [6]となる。また[7]定理から $\dim Im f$ =[8]である。([6]の左上の転置記号に注意)

(2)
$$f$$
の表現行列が $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ になるように \mathbf{R}^3 および \mathbf{R}^2 の基底を 1 組ずつ定めよ。