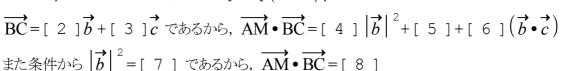
2015年度前期末試験問題·数学B(E2)

- 1. 次の各問いに答えよ。ただし、答のみ。 (25点)
 - (1) 点 (1,2) を通り, 方向ベクトルが (2,-1) である直線の媒介変数 t による方程式を求めよ。
 - (2) 直線 -x+2y+2=0 について, [1] 法線ベクトルを 1 つ求めよ。 [2] 点 (-1,1) との距離を求めよ。
 - (3) $\vec{a} = (2, 1)$, $\vec{b} = (1, 2)$ のとき, $\vec{c} = (-1, 3)$ を \vec{a} , \vec{b} の線形結合で表せ。
 - (4) \overrightarrow{a} , \overrightarrow{b} が線形独立であるとき、等式 $2\overrightarrow{a} + x\overrightarrow{a} 3\overrightarrow{b} = y\overrightarrow{a} (2-x)\overrightarrow{b}$ が成り立つように、実数 x, y の値を求めよ。
 - (5) 三角形 OAB において、AB の中点を M、OA を 1:2 に内分点を N とし、OM と BN の交点を P とする。次の文章の [] に入る最も適切な答えをかけ。

 $\overrightarrow{a} = \overrightarrow{OA}, \overrightarrow{b} = \overrightarrow{OB}$ とすれば、 $\overrightarrow{ON} = [1]\overrightarrow{a}, \overrightarrow{OM} = [2](\overrightarrow{a} + \overrightarrow{b})$ となる。 $\overrightarrow{OP} : PM = m : (1 - m) \quad (0 < m < 1)$ とすれば、 $\overrightarrow{OP} = [3](\overrightarrow{a} + \overrightarrow{b})$ となるので $\overrightarrow{NP} = [4]\overrightarrow{a} + [5]\overrightarrow{b}$ となる。また、 $\overrightarrow{NB} = [6]\overrightarrow{a} + [7]\overrightarrow{b}$ であり、 $\overrightarrow{NP} / | \overrightarrow{NB}$ だから m の値は [8] となる。従って、 $\overrightarrow{OP} : PM = [9] : [10] (最も簡単な整数比)$

- (6) 2 つの点 **A** (2,5), **B** (7,−3) を通る直線の媒介変数 *t* による方程式を求めよ。
- (7) AB=AC の二等辺三角形 ABC において、辺 BC の中点を M とする。次の文章の [] に入る最も適切な答えをかけ。

$$\overrightarrow{b} = \overrightarrow{AB}, \overrightarrow{c} = \overrightarrow{AC}$$
 Etal, $\overrightarrow{AM} = \begin{bmatrix} 1 \\ \end{bmatrix} \begin{pmatrix} \overrightarrow{b} + \overrightarrow{c} \end{pmatrix}$,



- (1) **A**(1, 2), **B**(-2, -3), **C**(-1, 4) のとき, 三角形 **ABC** の重心 **G** の座標を求めよ。
- (2) **A** (-3, 5), **B** (4, -9) のとき, 線分 **AB** を 4:3 に内分する点を **P**, 線分 **AB** を 3:4 に 内分する点を **Q** とするとき,
 - [1] **P** の座標を求めよ。
 - [2] \overrightarrow{OQ} を \overrightarrow{OA} , \overrightarrow{OB} の線形結合で表せ。(成分表示でない)
- (3) O(0,0), A(9,-2), P(k,2) であるとき, $\overrightarrow{OP} \perp \overrightarrow{AP}$ となるように定数 k の値を定めよ。
- (4) ベクトル $\overrightarrow{a}=(2,-1)$ と $\overrightarrow{b}=(k-1,k)$ が垂直となるように定数 k の値を定めよ。
- (5) $|\vec{a}| = 2$, $|\vec{b}| = \sqrt{3}$, $\vec{a} \cdot \vec{b} = 2$ のとき, $|\vec{a} + 2\vec{b}|$ の値を求めよ。
- (6) A(2,3), B(6,-7), C(-1,k), D(k,2) のとき, \overrightarrow{AB} // \overrightarrow{CD} となるように定数 k の値を定めよ。

- (7) 平行四辺形 ABCD において、AB=1, AD=3, \angle BAD= $\frac{2}{3}\pi$ のとき、辺 BD の長さを
- (8) 次の2つのベクトルのなす角 θ ($0 \le \theta \le \pi$) を求めよ。

[1]
$$\overrightarrow{a} = (2, 3), \overrightarrow{b} = (-2, -3)$$
 [2] $\overrightarrow{a} = (1, 3), \overrightarrow{b} = (4, 2)$

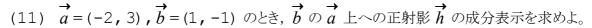
(9) 図の直角二等辺三角形 ABC において, 次の内積を求めよ。

[1]
$$\overrightarrow{AB} \cdot \overrightarrow{BC}$$
 [2] $\overrightarrow{AB} \cdot \overrightarrow{AC}$ [3] $\overrightarrow{BC} \cdot \overrightarrow{CA}$

[2]
$$\overrightarrow{AB} \cdot \overrightarrow{AC}$$

[3]
$$\overrightarrow{BC} \cdot \overrightarrow{CA}$$

(10) 3つの点 A(-1,0), B(2,-1), C(x,y) と実数 k について $\overrightarrow{AC} = k \overrightarrow{AB}$, $|\overrightarrow{AC}| = 20$ が成り立つとき



3. 2つの異なる定点 A, B に対して,

$$\left|\overrightarrow{AP}\right|^2 + \left|\overrightarrow{BP}\right|^2 = \left|\overrightarrow{OA}\right|^2 + \left|\overrightarrow{OB}\right|^2 \cdots \bigcirc$$

を満たす点Pに関する次の考察の()に入る最も適切な答えを解答用紙にかけ。なお, O は原 点である。ただし、答のみ。 (12点)

$$\overrightarrow{a} = \overrightarrow{OA}, \overrightarrow{b} = \overrightarrow{OB}, \overrightarrow{p} = \overrightarrow{OP}$$
 $\succeq \Rightarrow 5.$

$$\left|\overrightarrow{AP}\right|^2 = \left|\overrightarrow{p} - \overrightarrow{a}\right|^2 = (1) + \left|\overrightarrow{a}\right|^2 - 2((2)) \cdots 2$$

$$\left|\overrightarrow{BP}\right|^2 = \left|\overrightarrow{p} - \overrightarrow{b}\right|^2 = (3) + \left|\overrightarrow{b}\right|^2 - 2((4)) \quad \cdots \quad 3$$

(2) + (3)

$$|\overrightarrow{AP}|^2 + |\overrightarrow{BP}|^2 = (1) + |\overrightarrow{a}|^2 - 2((2)) + (3) + |\overrightarrow{b}|^2 - 2((4))$$

= $(5) - 2(6) + |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2$, ここで条件①を用いると $(7) - (6) = (8)$ となる。
 $(7) - (6) = (8)$ の両辺に $\frac{1}{4} |\overrightarrow{a} + \overrightarrow{b}|^2$ を加えて変形すると

 $|(9)|^2 = \frac{1}{4} |\vec{a} + \vec{b}|^2$ 従って、点 P は中心の位置ベクトルが(10)、半径が(11)の 円周上にある。

4. 次の文章の()に入る最も適切な答えを下の選択肢から選び、その 符号 を解答用紙にかけ。 なお,この問題は 無解答なら0点であるが,誤答なら-3点とする。 (10点)

1個のベクトル $\stackrel{\rightarrow}{a}$ が線形独立であるための条件は(1)である。2個のベクトル $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ が線形独立 であるための条件は(2)である。一般にn 個のベクトル $\stackrel{\rightarrow}{a}_1$, $\stackrel{\rightarrow}{a}_2$, …, $\stackrel{\rightarrow}{a}_n$ が線形独立であるとは これらの 1 次関係式(3)が(4)以外の解を持たないことである。 ベクトル a と,その逆ベクトル \overrightarrow{a} は (5) である。また、 \overrightarrow{a} と \overrightarrow{b} が線形独立ならば \overrightarrow{a} と \overrightarrow{a} + \overrightarrow{b} は (6) である。 \overrightarrow{a} \bot かつ

 $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$ ならば, $\vec{a} \geq \vec{b}$ は (7) である。なぜならば $\vec{ma} + \vec{nb} = \vec{0}$ を満たす数 \vec{m} , \vec{n} を求めると,この等式の両辺とベクトル \vec{a} との内積を計算すれば(8) $(\because \vec{a} \cdot \vec{b} = 0)$ となり,(9)だから $\vec{m} = 0$ となる。今度は等式の両辺と \vec{b} との内積を計算すれば,同様な理由で(10)となり $\vec{a} \geq \vec{b}$ は(7)であることが示せた。

以下選択肢

$$b: \sum_{k=1}^{n} \alpha_{k} \overrightarrow{a}_{k} = \overrightarrow{0}$$
 い: $\sum_{k=1}^{n} \overrightarrow{a}_{k} = \overrightarrow{0}$ う: 線形従属 え: 線形独立 お: $\overrightarrow{a} = \overrightarrow{0}$ か: $\overrightarrow{a} \neq \overrightarrow{0}$ き: $\alpha_{1} = \alpha_{2} = \cdots = \alpha_{n} = 0$ く: $\overrightarrow{a}_{1} = \overrightarrow{a}_{2} = \cdots = \overrightarrow{a}_{n} = \overrightarrow{0}$ け: $\overrightarrow{a} / \overrightarrow{b}$ こ: $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ さ: $n = 0$ し: $n \neq 0$ す: $n = \overrightarrow{0}$ せ: $\overrightarrow{a} \triangleright \overrightarrow{b}$ が平行でないこと そ: $\overrightarrow{a} \triangleright \overrightarrow{b}$ が垂直でないこと た: $m |\overrightarrow{a}|^{2} = 0$ ち: $m(\overrightarrow{a})^{2} = 0$ つ: $m |\overrightarrow{a}|^{2} = \overrightarrow{0}$ て: $|\overrightarrow{a}|^{2} = 0$ と: $|\overrightarrow{a}|^{2} \neq \overrightarrow{0}$ な: $|\overrightarrow{a}|^{2} \neq 0$

- 5. $\overrightarrow{a}=(1,-1)$, $\overrightarrow{b}=(-2,1)$ のとき, $(\overrightarrow{b}-m\overrightarrow{a})\bot\overrightarrow{a}$ となるように実数 m の値を求めよ。また, このとき $\overrightarrow{b}-m\overrightarrow{a}$ の成分表示を求めよ。(3点)
- 6. $\overrightarrow{a} = (a_1, a_2)$, $\overrightarrow{b} = (b_1, b_2)$ のとき, $|\overrightarrow{a}|^2 |\overrightarrow{b}|^2 (\overrightarrow{a} \cdot \overrightarrow{b})^2 \ge 0$ が成り立つことを証明せよ。 また,等号成立のための必要十分条件も求めよ。ただし, $\overrightarrow{a} \cdot \overrightarrow{b}$ はベクトルの成分を用いた定義式を使って証明すること。 2 つのベクトルのなす角を使った証明には点を与えない。(8点)
- 7. $\vec{a} = (-3, 2)$ のとき、次の各問いに答えよ。ただし、 (1) と (4) は答のみ。 (17点)
 - (1) $\stackrel{\rightarrow}{a}$ と同じ向きの単位ベクトルを $\stackrel{\rightarrow}{u}_1$ とするとき, $\stackrel{\rightarrow}{u}_1$ の成分表示を求めよ。
 - (2) \overrightarrow{a} と垂直な単位ベクトルで、その \boxed{x} 成分が正 となるものを \overrightarrow{u}_2 とするとき、 \overrightarrow{u}_2 の成分表示を求めよ。
 - (3) $\overrightarrow{e}_1 = (1, 0)$ とするとき、 \overrightarrow{e}_1 を \overrightarrow{u}_1 , \overrightarrow{u}_2 の線形結合で表せ。
 - (4) \overrightarrow{e}_2 =(0,1) とするとき, \overrightarrow{e}_2 を \overrightarrow{u}_1 , \overrightarrow{u}_2 の線形結合で表せ。