2019年度後期中間試験問題·微分積分Ⅱ(C2)

- 注意: (1) 答のみの問題で、問題番号を囲む括弧は数式上必要な括弧を兼ねていない。例えば $x^2+2x-3=(1)(x-1)$ となっていたら (1) の正解は (x+3) であり、((1))(x-1) となっていたら正解は x+3 である。また、不必要な括弧をつけた解答も減点もしくは 0 点とする。
- (2) $\frac{b}{a}$ を b/a と表すことがある。 $\exp x = e^x$ である。 自然数全体の集合を $\mathbb N$ と表す。
- 1. 次の定積分の値を求めよ。ただし、答のみ。(21点)

(1)
$$\int_{2}^{3} \sqrt{x^{2} + 2x - 8} \, dx$$
 (2) $\int_{-1}^{0} \frac{dx}{\sqrt{x^{2} + 2x + 2}}$

(3)
$$\int_0^1 \frac{dx}{4\cosh^2(x/2)}$$
 (双曲線関数) (4) $\int_0^{p/4} \cos^4 x \sin x \, dx$

(5)
$$\int_{1}^{2} (x+3)e^{x} dx$$
 (6) $\int_{0}^{p} (x+1)\sin x dx$ (7) $\int_{0}^{1/\sqrt{2}} \sqrt{1-x^{2}} dx$

(8)
$$\int_0^p \sin^7 \frac{x}{2} dx$$
 (9) $\int_0^{p/2} \cos^8 x dx$ (10) $\int_1^e x^4 \log x dx$

$$(11) \quad \int_{e}^{e^{2}} \frac{dx}{x \log 2x}$$

2. 次の不定積分を求めよ。なお、積分定数は省略してもよい。ただし、答のみ。(23点)

(1)
$$\int \frac{dx}{9-x^2}$$
 (2) $\int \sqrt{x^2+2} \, dx$ (3) $\int \sin^5 x \, dx$

(4)
$$\int \frac{e^x - 1}{2e^x - 2x - 1} dx$$
 (5) $\int \frac{2}{1 + \sin 2x + \cos 2x} dx$ (Hint: 2倍角の公式)

(6)
$$\int \sqrt{\cos x + 2} \cdot \sin x \, dx \qquad (7) \quad \int x e^{-x} dx \qquad (8) \quad \int x^2 \cos 4x \, dx$$

(9)
$$\int \frac{(x+1)^2}{x^2+1} dx$$
 (10) $\int \frac{dx}{1-8x^2}$ (11) $\int \sin 2x \sin 9x dx$

$$(12) \int e^{3x} \sin 7x \, dx$$

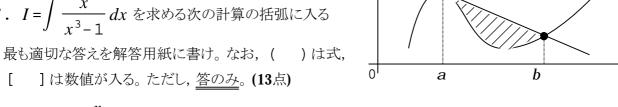
- 3. 次の問いに答えよ。ただし、<u>答のみ</u>。(6点)
 - (1) 曲線 $y = \sqrt{(x-1)^3} (14/9 \le x \le 23/3)$ の長さを求めよ。
 - (2) 半径 r の直円柱がある。この円柱を,底面の直径 AB を通り底面と q の角をなす平面で切るとき,底面と平面の間の部分の体積を求めよ。ただし,0 < q < p/2 とする。
 - (3) 曲線 $y = \cos x$ $(0 \le x \le p/2)$ とx 軸, y 軸で囲まれた図形をx 軸のまわりに回転してできる回転体の体積を求めよ。

4. $I = \int \frac{dx}{1 + \sin^2 x}$ を求める次の計算の括弧に入る最も適切な答えを解答用紙に書け。なお、

(1)~(4)は \underline{t} のみの式,(5)は \underline{x} のみの式が入る。ただし,<u>答のみ</u>。(6点)

(ここから) $t = \tan x$ と置換すると dx = (1)dt, $1 + \sin^2 x = \frac{(2)}{t^2 + 1}$ となるので

$$I=\int$$
 (3) $dt=$ (4), t を元に戻して $I=$ (5) (ここまで)


5.
$$I_n = \int \frac{dx}{\sqrt{\left(a^2 - x^2\right)^n}} \left(a > 0, |x| < a, n \in \mathbb{N}\right)$$
 とするとき、次の問いに答えよ。

なお,積分定数は省略する。ただし,(1),(2) は答のみ。(12点)

(1) I_1 を求めよ。 (2) I_2 を求めよ。

(3)
$$I_{n+2} = \frac{1}{na^2} \left\{ \frac{x}{\sqrt{(a^2 - x^2)^n}} + (n-1)I_n \right\}$$
 を証明せよ。

- 6. 3次曲線 $y = f(x) = ax^3 + bx^2 + cx + d$ (a > 0) とその接線で囲まれた図形の面積は、接点の x 座標を a , 接線とこの曲線との交点の x 座標を b とするとき, $\frac{1}{12}a(b-a)^4$ となることを証明 せよ。ただし,*a ≠ b* とする。(**7**点)
- 7. $I = \int \frac{x}{x^3 + 1} dx$ を求める次の計算の括弧に入る

(ここから)
$$\frac{x}{x^3-1}$$
 を部分分数に分解すると

$$\frac{x}{x^{3}-1} = \frac{\begin{bmatrix} 1 \end{bmatrix}}{x-1} + \frac{\begin{bmatrix} 3 \end{bmatrix}x + \begin{bmatrix} 4 \end{bmatrix}}{x^{2} + (2)}, \int \frac{\begin{bmatrix} 1 \end{bmatrix}}{x-1} dx = (5)$$

$$\int \frac{\begin{bmatrix} 3 \end{bmatrix}x + \begin{bmatrix} 4 \end{bmatrix}}{x^{2} + (2)} dx = \int \frac{\begin{bmatrix} 3 \end{bmatrix}((6)) + \begin{bmatrix} 7 \end{bmatrix}}{((6))^{2} + 3/4} dx, \int \frac{\begin{bmatrix} 3 \end{bmatrix}((6))}{((6))^{2} + 3/4} dx = (8)$$

$$\int \frac{[7]}{((6))^2 + 3/4} dx = (9), 以上より I = \frac{1}{6} \log(10) + (9)$$
 (ここまで)

8. 次の不定積分を求めよ。(12点)

(1)
$$\int \frac{7x^2 + 12x + 2}{(x-2)(x+1)^3} dx$$
 (2) $\int \frac{dx}{(x^2+2)^2}$