ファイバブラッググレーティングを用いた振動計

室伏 由喜菜*1, 佐藤 憲史*2

Vibration sensors using fiber Bragg gratings

Yukina Murofushi^{*1}, Kenji Sato^{*2}

Abstract: We have fabricated a vibration sensor using fiber Bragg gratings. A light-voltage conversion circuit is designed, and the vibration sensor is constructed for monitoring broadband vibrations. The conversion circuit consists of a transimpedance amplifier including a photodiode and an inverting amplifier with a 20-dB gain. The circuit has a monitoring port to measure the direct current through the photodiode. By monitoring and stabilizing the direct current, a reproducible vibration sensing can be achieved. The 3 dB frequency bandwidth of the circuit was measured to be from 3 Hz to 60 kHz. To evaluate the fabricated vibration sensor, we have conducted impact tests. In response to the impact to a metallic plate, vibrating waveforms were observed, and components from 2 kHz to 60 kHz were observed with in Fourier spectrum.

Key Words: fiber Bragg gratings, sensing, vibration

1 はじめに

近年,社会インフラの老朽化や自然災害による被害が多 発しており,建造物や環境の異常をモニタすることが重要 となっている.特に,建造物のひずみや振動をモニタする 技術は,維持管理のため,ひいては安心・安全な社会を実 現するために不可欠である.このようなモニタリング技術 において光を用いた方法は,電磁ノイズへの耐性,小型軽 量,センサへの電力供給が不要,広範囲に分布した敷設の 可能性などの利点から盛んに研究されている^[1].

ファイバブラッググレーティング(FBG: Fiber Bragg Grating)は、光ファイバのコア内に周期的なグレーティン グを形成した光デバイスであり、特定の波長のみを反射す る特性をもつ. FBG はこれまで光ファイバ通信において 光フィルタとして使用されてきた. 光ファイバ通信では、 例えば温度などの外部の影響を受けると FBG の特性が変 化することが問題となる. しかし、これを利用すればセン サとして応用できるため、温度やひずみセンサとして用い られている. 温度やひずみは比較的低速な変動であるが、 振動のような高速の変動も測定可能である. 20 kHz 以上 の超音波や数 kHz~数 MHz のアコースティックエミッシ ョンによる建造物の欠陥検出に FBG を用いた振動測定技 術が開発され、非破壊検査への適用が検討されている^[2].

本稿では,FBG を用いた振動モニタリング技術に着目 する.1 Hz の低周波から 100 kHz 程度の高周波で広帯域 の振動を測定するため,振動計の構成や光・電圧変換回路を 検討する.

2 FBGのひずみに対する応答特性

FBG を形成した 1.55 µm 帯の石英系シングルモードフ ァイバ(タツタ電線製)を用いて,反射スペクトルを測定し た.広帯域な光源として,増幅された自然放出光を出射す る半導体光アンプを使用した.光ファイバを2つの微動台 を用いて FBG を含む光ファイバの両端を56 cm の長さで 固定し,100 µm から500 µm まで50 µm ずつ片方の微動 台を移動し,そのときの反射スペクトルを光スペクトルア ナライザで測定した.微動台の移動距離は,最小目盛り10 µm のダイヤルゲージを用いて測定した.

長さ1の光ファイバをΔ1だけ変化させたときのひずみ *ε* は、次式で定義される.

$$\varepsilon = \frac{\Delta l}{l}$$
 (1)

式(1)より, 光ファイバを 50 µm ずつ変化させたときのひ ずみを求めた. ここでは, 光ファイバと FBG 部分は均一 にひずむと仮定した. 反射スペクトルを図1に示す. ひず みに対するブラッグ波長の変化を図2に示す. 図2より, ブラッグ波長の変化はひずみ変化にほぼ比例し, 傾きから ひずみ感度は 1.10 pm/µ となることがわかる. これまでの 報告ではひずみ感度は約 1.2 pm/µ であり, やや小さくな った. この要因として, 樹脂で被覆された光ファイバ素線

^{*1} 専攻科 機械・電気システム工学専攻 Advanced Engineering Course, Department of Mechanical and Electrical System Engineering *2 電気電子工学科

Department of Electrical and Electronics Engineering

沼津工業高等専門学校研究報告 第48号, pp. 15-18, 2014年3月

(外径 250 µm)を用いたことや光ファイバを微動台にテー プで固定したことが考えられる. ブラッグ波長は pm の精 度で測定可能であるので, µ オーダーのひずみを測定する ことができる.

3 振動センサ

FBG は振動センサとして使用することができる. レー ザを光源とした振動測定の原理を図 3 に示す. FBG の反 射スペクトルの勾配が急な波長域に発振波長をもつレー ザ光を入射する. FBG が振動を受けると反射スペクトル がシフトするため,光強度が変化する. これにより,振動 によるブラッグ波長のシフトをレーザの光強度の変化と して検出することができる.

図3 レーザを光源とした振動測定の原理図

3.1 振動センサの構成

FBG を用いた振動計の構成を図4に示す.レーザ光源 からサーキュレータを通り光ファイバに入射した光は, FBG 部分で光強度が変化し反射する.反射光を変換回路 で電圧に変換し、モニタする.この振動計は、反射スペク トルの小さなシフトをレーザの光強度の大きな変化とし て検出することができ、高速・高感度の測定が可能な利点 がある.また、ブラッグ波長の異なる FBG を多数分布さ せ、広範囲なモニタが可能になる.実験には、タツタ電線 で作製された FBG(中心波長 1551 nm,半値全幅 1.19 nm, サーキュレータの損失を含んだ反射率 65 %)を形成した石 英系シングルモードファイバを用いた.また、単一モード の狭線幅をもつ光を入射するため、レーザ光源には、温度 調整が可能な 1.5 µm 帯分布帰還型(DFB: Distributed Feedback)レーザモジュールを使用した.

図4 FBG を用いた振動計の構成

4 変換回路の設計と評価

振動によるブラッグ波長の変化は、レーザの光強度の変 化として出力される.これを電圧として出力するには、光 強度を電圧に変換する回路が必要となる.また、波形をオ シロスコープでモニタするため、電圧を0.1 V~1 V程度 に増幅する必要がある.

高速な振動をモニタするため、センサの周波数帯域を決める要因を明らかにする必要がある。周波数帯域は、変換回路の周波数帯域と FBG の応答特性で制限される。そのため、変換回路を設計し評価することが重要である。本稿では、1 Hz 以下から超音波領域の 100 kHz までの帯域を目標とする。

4.1 変換回路の設計と計測技術

変換回路の構成を図5に示す.光強度をフォトダイオード(PD: Photo Diode)で受信し, PD からの電流を電圧に変換する. コンデンサで電圧の直流成分を除去し,電圧の交流成分のみを増幅する.

設計した変換回路図を図6に示す.低周波側の帯域は, 次式で決定される. $f_1 = \frac{1}{2\pi(C_2 + C_3)R_2}$

ここで、 $C_2+C_3=10 \mu$ F, $R_2=100 k\Omega$ として、 $f_1=0.16 Hz$ となる. 高周波側は、主にオペアンプの周波数特性によっ て制限される. オペアンプには National Semiconductor 製の LMC662CN を使用した. オペアンプのデータシート より 20 dB のゲインで使用すると、3 dB 周波数帯域は 100 kHz となる. PD には 2 GHz の周波数帯域をもつ NEC 製 の NDL5407P1C を使用した.

(2)

この回路は、単電源構成として電源電圧の9Vを R₄と R₅で分圧し、電源電圧の1/2の電圧である4.5Vをオペア ンプの非反転入力端子に加えている.これにより、4.5V を中心として交流信号が両側に振れる.PDで受信した光 を電流に変換し、トランスインピーダンスアンプで電流を 電圧に変換する.次に、変換した電圧の直流成分を除去し、 後段の反転増幅回路で10倍に電圧増幅している.作製し た回路をアルミ製の箱に入れ、箱の内壁に回路を接地する ことで、外部からのノイズを遮断した.

このとき, PD のカソード側に電流モニタ付バイアス電 源を接続した. PD 電流のモニタにより, レーザ波長の設 定が可能となる. PD 電流の直流成分が一定となるように レーザの温度にフィードバックする. この構成により, FBG の温度が変化した場合でも安定に計測することがで きる.

図6 設計した変換回路図

4.2 周波数応答特性

図7に示す構成で変換回路を評価した.DFB レーザモ ジュールにファンクションジェネレータで変調した正弦 波電流を加え,変調した光を直接変換回路に入射した.光 変調度を0.1,PDの直流電流を0.45 mAに固定し,ファ ンクションジェネレータで周波数を0.4 Hzから200 kHz まで変化させたときの出力電圧をオシロスコープで測定 した.

変換回路の周波数帯域の測定結果を図8に示す.10 Hz から20kHzまで平坦となった.3dB周波数帯域は、3Hz から60kHzとなり、設計した周波数帯域に近い値を得た. 設計した周波数帯域よりも狭くなった要因として、オペア ンプの周波数帯域や浮遊容量の問題が考えられる.

5 振動計を用いた打撃実験

作製した振動計を評価するための初期的な検討として, 打撃実験を行った.透過光の光強度を光パワーメータで測 定し,反射光の直流成分を電流モニタ付電源で測定した. 金属板を鋼鉄製の棒で打撃したときの振動をオシロスコ ープで測定した.比較のため,薄円板型のセラミック圧電 素子(外径 2.0 cm)を FBG の隣に貼った.金属板には,10 ×10×1 cm のアルミ板,60×90×6 cm の鋼鉄製の光学定 盤を用いた.

5.1 FBGの固定法

図9に示すように, FBG部分を挟んで3 cm の間隔で, 2 点を金属板にテープを用いて貼った.このとき,2 点間 に張力がかかった状態で固定した.

FBG は金属板表面の直線状のひずみを検出しており, 縦波に対しての感度が高い. アルミや鉄および石英の縦波 の音速は約 6×10^3 m/s である. 音波の波長を λ_4 , FBG を 固定した間隔を L_f とする. ひずみを計測するためには, $L_f << \lambda_4$ としなければならない. 測定可能な最小の波長は $L_f = \lambda_4/2$ であり, 100 kHz まで測定するためには $L_f = 3$ cm となる. センサの周波数帯域は, FBG の長さと固定した 長さで決まる. よって, FBG の長さと固定方法により帯

沼津工業高等専門学校研究報告 第48号, pp. 15-18, 2014年3月

域を広げることができる.

図9 FBG と圧電素子の配置

5.2 実験結果

10×10×1 cm のアルミ板をL字型の鋼鉄製棒で打撃し たときの応答を図 10 に示す.オシロスコープで取得した データをフーリエ変換した結果を図 11 に示す. 金属板の 打撃に応答して, 0.2 V程度の信号波形が観測された.フ ーリエ変換して得られたスペクトルから, 60 kHz までの 成分が検出され,作製した振動計が高速な振動モニタとし て機能することを確認した.

5.3 考察

FBG による振動計と圧電素子は、時間波形、スペクト ルとも同様な結果を示した.図11より、ピーク周波数は6 kHz で一致している.ただし、詳細な形状は異なる.光学 定盤を打撃したときには、低周波のスペクトルが表れてい ることを確認した.FBG による振動計は、ファイバの長 手方向のひずみに応答する.実際の建造物などの振動は複 雑であり、FBG の配置場所や方向など設置法を検討する 必要がある.

6 おわりに

FBG を用いた振動計について,光強度を電圧に変換す る回路を作製・評価し,3dB周波数帯域として3Hz~60 kHz を得た.打撃実験により,アルミ板の振動の応答に対 して,時間波形とスペクトルを得た.FBG を用いた振動 計と圧電素子はほぼ同様な結果を示した.変換回路の PD のカソード側に電流モニタ付電源を接続し,PD 電流の直 流成分が一定となるようにレーザの温度にフィードバッ クすることで,安定した計測を可能とする技術を提案した.

参考文献

- [1] 佐々木一正, "光ファイバセンシング—FBG 歪センシングと応用", Plant Engineer, Vol.41, No.12, pp.66-72, 2009.
- [2] 津田浩, 佐藤英一, 中島富男, 佐藤明良, "光ファイバ 広帯域振動検出システムの開発—FBG センサを用い たひずみ・AE 同時計測技術—", Synthesiology, Vol.6, No.1, pp.45-54, 2013.