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1 Introduction

We write this document as a guide for the use of the relativistic equation of state (EOS) table.

This EOS table is constructed in the following ranges:

• temperature T [MeV]: −1.0 ≤ log10(T ) ≤ 2.6; mesh of log10(T ) = 0.04

• proton fraction Yp: 0.01 ≤ Yp ≤ 0.65; mesh of Yp = 0.01

• baryon mass density ρB [g/cm3]: 5.1 ≤ log10(ρB) ≤ 16.0; mesh of log10(ρB) = 0.1

We also add the results for the cases of T = 0 and Yp = 0. In this EOS table, we take into

account the contribution of Λ hyperons when the Λ hyperon fraction is larger than 10−5.

We have worked out consistent calculations for uniform matter and non-uniform matter in

the relativistic mean-field (RMF) framework [1, 2, 3]. We use the Thomas-Fermi approximation

to describe inhomogeneous nuclear matter, which can be modeled as a mixture of free neutrons,

free protons, alpha-particles, and a single species of heavy nuclei. It is known that Λ hyperons

may play a role at high density, and the Λ hyperon fraction increases as the temperature

increases. For extremely low density and finite temperature, we approximate the nuclear matter

as a classical ideal gas of protons, neutrons, Λ hyperons, and alpha-particles. Antiparticles have

some contribution when temperature is very high. The thermodynamically favorable state is the

one that minimizes the free energy density in this model, and we determine the most favorable

state of nuclear matter at each temperature, proton fraction, and baryon mass density.

The leptons can be considered as uniform non-interacting relativistic particles, which are

relatively easy to deal with. Hence, we provide the baryon EOS without the lepton contribution

in this table. Users are supposed to add the lepton contribution to the baryon EOS.

This document is arranged as follows. In Sec. 2, we describe the RMF theory. In Sec. 3,

we introduce the ideal-gas approximation to be used at low density. In Sec. 4, we describe the

Thomas-Fermi approximation, which is used for calculating non-uniform matter. In Sec. 5, we

make a detailed description of how to work out the EOS table. In Sec. 6, we list the definitions

of physical quantities in the EOS table. Sec. 7 is devoted to suggestions and discussions for

using the EOS table. Users who are not interested in the framework and calculating processes

can only read Sec. 6 and Sec. 7 for the purpose to use the EOS table correctly.

2



2 Relativistic mean-field theory

We adopt the RMF theory with nonlinear σ and ω terms to describe homogeneous matter

containing nucleons and Λ hyperons [3, 4]. We start with the Lagrangian given by

LRMF = ψ̄ [iγµ∂
µ −M − gσσ − gωγµω

µ − gργµτaρ
aµ] ψ

+ψ̄Λ

[
iγµ∂

µ −MΛ − gΛ
σ σ − gΛ

ωγµω
µ
]
ψΛ

+
1

2
∂µσ∂µσ − 1

2
m2

σσ
2 − 1

3
g2σ

3 − 1

4
g3σ

4

−1

4
WµνW

µν +
1

2
m2

ωωµω
µ +

1

4
c3 (ωµω

µ)2

−1

4
Ra

µνR
aµν +

1

2
m2

ρρ
a
µρ

aµ. (1)

Here, ψ and ψΛ denote the nucleon and Λ hyperon fields, respectively. σ, ωµ, and ρaµ are σ,

ω, and ρ meson fields with masses mσ, mω, and mρ. W µν and Raµν are the antisymmetric

field tensors for ωµ and ρaµ. In the Lagrangian, the constants gσ, gω, and gρ are the coupling

constants for the interactions between mesons and nucleons, the coefficients g2 and g3 are

the self-coupling constants for the σ meson field, and c3 is the self-coupling constant for the ω

meson field. It is known that the inclusion of the nonlinear σ terms is essential to reproduce the

properties of nuclei quantitatively and provide a reasonable value for the incompressibility, while

the nonlinear ω term is added in order to reproduce the density dependence of the vector part of

the nucleon self-energy obtained in the RBHF theory. We adopt the parameter set TM1 listed

in Table 1, which was determined in Ref. [4] by fitting to some ground-state properties of finite

nuclei including unstable nuclei. With the TM1 parameter set, the nuclear matter saturation

density is 0.145 fm−3, the binding energy per nucleon is 16.3 MeV, the symmetry energy is 36.9

MeV, and the incompressibility is 281 MeV. The RMF theory with the TM1 parameter set

provides an excellent description of nuclear matter and finite nuclei [4], and it is also shown to

agree satisfactorily with experimental data in studies of nuclei with deformed configurations [5].

For the parameters of Λ hyperons, we use the experimental mass value MΛ = 1115.7 MeV.

Concerning the coupling constants between mesons and Λ hyperons, we take gΛ
ω/gω = 2/3

based on the naive quark model and gΛ
σ /gσ = 0.621 determined by fitting to experimental

binding energies of single Λ hypernuclei [3]. It is known that the inclusion of tensor coupling

between ω and Λ is important to produce small spin-orbit spitting of single-Λ hypernuclei, but
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Table 1: The parameter set TM1 for the RMF Lagrangian

Parameter TM1

M [MeV] 938.0

mσ [MeV] 511.19777

mω [MeV] 783.0

mρ [MeV] 770.0

gσ 10.02892

gω 12.61394

gρ 4.63219

g2 [fm−1] -7.23247

g3 0.61833

c3 71.30747

it does not contribute to homogeneous matter. The Λ hyperon is a charge neutral and isoscalar

particle so that it does not couple to the ρ meson. It is shown that these parameters can

reproduce well the experimental data for both single and double Λ hypernuclei [3].

Starting with the Lagrangian, we derive a set of Euler-Lagrange equations. We adopt the

RMF approximation as described in Ref. [6], in which the meson fields are treated as classical

fields and the field operators are replaced by their expectation values. For homogeneous matter,

the nonvanishing expectation values of meson fields are σ = 〈σ〉, ω = 〈ω0〉, and ρ = 〈ρ30〉. The

equations of motion for the meson fields in homogeneous matter have the following form:

σ = − gσ

m2
σ

〈ψ̄ψ〉 − gΛ
σ

m2
σ

〈ψ̄ΛψΛ〉 − 1

m2
σ

(
g2σ

2 + g3σ
3
)
, (2)

ω =
gω

m2
ω

〈ψ̄γ0ψ〉+
gΛ

ω

m2
ω

〈ψ̄Λγ0ψΛ〉 − 1

m2
ω

c3ω
3, (3)

ρ =
gρ

m2
ρ

〈ψ̄τ3γ
0ψ〉. (4)

The stationary Dirac equations for nucleons and Λ hyperons are given by

(
−iαk∇k + βM∗

N + gωω + gρτ3ρ
)
ψs

N = εs
Nψs

N , (5)
(
−iαk∇k + βM∗

Λ + gΛ
ωω

)
ψs

Λ = εs
Λψs

Λ, (6)
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where N stands for the nucleon (N = p or n). M∗
N = M + gσσ and M∗

Λ = MΛ + gΛ
σ σ are the

effective nucleon mass and effective Λ mass, respectively. s denotes the index of eigenstates,

while εs
N and εs

Λ are the single-particle energies.

Baryons occupy single-particle orbits with the occupation probability f s
i (i = p, n, or Λ).

At zero temperature, f s
i = 1 under the Fermi surface, while f s

i = 0 above the Fermi surface.

For finite temperature, the occupation probability is given by the Fermi-Dirac distribution,

f s
i =

1

1 + exp [(εs
i − µi) /T ]

=
1

1 + exp
[(√

k2 + M∗
i

2 − νi

)
/T

] , (7)

f s
ī =

1

1 + exp
[(
−εs

ī + µi

)
/T

] =
1

1 + exp
[(√

k2 + M∗
i

2 + νi

)
/T

] , (8)

where i and ī denote the particle and antiparticle, respectively. εs
i and εs

ī are the single-particle

energies. The relation between the chemical potential µi and the kinetic part of the chemical

potential νi is give by

µp = νp + gωω + gρρ, (9)

µn = νn + gωω − gρρ, (10)

µΛ = νΛ + gΛ
ωω. (11)

The chemical potential µi is related to the baryon number density ni as

ni =
1

π2

∫ ∞

0
dk k2

(
fk

i − fk
ī

)
, (12)

where the quantum number s is replaced by the momentum k when we do the integration in

the momentum space instead of summing over the eigenstates. The equations of the meson

fields can be written as

σ = − gσ

m2
σ

∑

i=p,n

1

π2

∫ ∞

0
dk k2 M∗

N√
k2 + M∗

N
2

(
fk

i + fk
ī

)

− gΛ
σ

m2
σ

1

π2

∫ ∞

0
dk k2 M∗

Λ√
k2 + M∗

Λ
2

(
fk

Λ + fk
Λ̄

)

− 1

m2
σ

(
g2σ

2 + g3σ
3
)
, (13)

ω =
gω

m2
ω

(np + nn) +
gΛ

ω

m2
ω

nΛ − c3

m2
ω

ω3, (14)

ρ =
gρ

m2
ρ

(np − nn) , (15)
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where ni is the baryon number density as defined in Eq. (12), and we denote nB = np +

nn + nΛ as the total baryon number density. We solve these equations self-consistently. The

thermodynamical quantities are described in Ref. [6], and we simply write the expressions here.

The energy density of nuclear matter including Λ hyperons is given by

ε =
∑

i=p,n,Λ

1

π2

∫ ∞

0
dk k2

√
k2 + M∗

i
2

(
fk

i + fk
ī

)

+
1

2
m2

σσ
2 +

1

3
g2σ

3 +
1

4
g3σ

4 +
1

2
m2

ωω2 +
3

4
c3ω

4 +
1

2
m2

ρρ
2, (16)

the pressure is given by

p =
∑

i=p,n,Λ

1

3π2

∫ ∞

0
dk k2 k2

√
k2 + M∗

i
2

(
fk

i + fk
ī

)

−1

2
m2

σσ
2 − 1

3
g2σ

3 − 1

4
g3σ

4 +
1

2
m2

ωω2 +
1

4
c3ω

4 +
1

2
m2

ρρ
2, (17)

and the entropy density is given by

s =
∑

i=p,n,Λ

1

π2

∫ ∞

0
dk k2

[
−fk

i ln fk
i −

(
1− fk

i

)
ln

(
1− fk

i

)

−fk
ī ln fk

ī −
(
1− fk

ī

)
ln

(
1− fk

ī

)]
. (18)

3 Ideal-gas approximation

The interaction between baryons is negligible at low density, so that we can treat baryons

as non-interacting Boltzmann particles at low density. We use the ideal-gas approximation to

describe the mixed gas of protons, neutrons, Λ hyperons, and alpha-particles at low density and

finite temperature. We note that the connection between the RMF results and the ideal-gas

approximation is smooth.

For Boltzmann particles with spin 1/2, mass Mi, and number density ni (i = p, n, or Λ),

we start with the partition function given by

Zi =
[
(ci

Q)ni/2/(ni/2)!
]2

, (19)

where we have used the abbreviation ci
Q =

(
MiT
2π

)3/2
. The factor (ni/2)! comes from avoiding the

double counting for ni/2 indistinguishable particles of spin up or spin down. We can calculate
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the free energy density from the partition function as

fi = −T ln Zi = −T ni

[
ln(2ci

Q/ni) + 1
]
. (20)

The entropy density is given by

si = −
(

∂fi

∂T

)

ni

= ni

[
ln(2ci

Q/ni) +
5

2

]
, (21)

the internal energy density can be written as

εi = fi + Tsi =
3

2
T ni, (22)

the chemical potential is obtained through the relation

µi =

(
∂fi

∂ni

)

T

= −T ln(2ci
Q/ni), (23)

and the pressure is given by

pi =

[
n2

i

∂ (fi/ni)

∂ni

]

T

= T ni. (24)

The partition function of alpha-particles can be written as

Zα =
[
cα
Q exp (Bα/T )

]nα

/nα!, (25)

where cα
Q = 8cp

Q, and nα is the alpha-particle number density. Bα = 28.3 MeV is the binding

energy of an alpha-particle taken from Ref. [7]. The thermodynamical quantities of alpha-

particles are given by

fα = −T nα

[
ln(cα

Q/nα) + 1
]
− nαBα, (26)

sα = nα

[
ln(cα

Q/nα) +
5

2

]
, (27)

εα =
3

2
T nα − nαBα, (28)

µα = −T ln(cα
Q/nα)−Bα, (29)

pα = T nα. (30)

For a mixed gas with the proton number density np, the neutron number density nn, the Λ

number density nΛ, and the alpha-particle number density nα, the free energy density is given

by

f = fp + fn + fΛ + fα. (31)
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We have to take into account the volume of the alpha-particle, otherwise the alpha-particle

fraction would be a large value at high densities, where the alpha-particles should actually

disappear. When we take into account the volume excluded by the alpha-particles, the free

energy densities in Eq. (31) are given by

fp = −(1− u) T ñp

[
ln(2cp

Q/ñp) + 1
]
, (32)

fn = −(1− u) T ñn

[
ln(2cn

Q/ñn) + 1
]
, (33)

fΛ = −(1− u) T ñΛ

[
ln(2cΛ

Q/ñΛ) + 1
]
, (34)

fα = −(1− u)
{
T ñα

[
ln(cα

Q/ñα) + 1
]
− ñαBα

}
, (35)

where u = nαvα is the fraction of space occupied by alpha-particles with the effective volume

of an alpha-particle vα = 24 fm−3 taken from Ref. [7]. We denote the effective number densities

of baryons or alpha-particles as ñi = ni/(1 − u) (i = p, n, Λ, or α). The inclusion of the

volume excluded by the alpha-particles has negligible effect in the low density region, while it

is necessary for the calculation at high density. Actually, we just use Eqs. (32), (33), and (34)

at very low density, while the RMF theory is used to describe baryons when the density is not

very low. For alpha-particles, we use Eq. (35) to calculate the free energy in the whole density

range. It is considered as a reasonable approximation because the number density of alpha-

particles is not so large even though the total baryon density is high, and the alpha-particle

fraction tends to vanish in the high density limit.

For very high temperature, we need to consider the contribution from antiparticles. The

alpha-particle fraction is very small at high temperature, so we can treat the matter as uniform

matter of baryons and antibaryons. We have included the freedom of antiparticles in the RMF

theory, but the RMF code meets some difficulty at extremely low density, so we need to take

some approximation in order to describe the range of low density and high temperature. We

take the nonrelativistic approximation of the RMF theory at low density, where the effective

mass M∗
i ≈ Mi, < mesons >≈ 0, and

√
k2 + M∗

i
2 ≈ Mi+

k2

2Mi
. Then the occupation probability

of the Fermi-Dirac distribution becomes

f s
i = ACi exp

(
−k2/2MiT

)
, (36)

f s
ī =

A

Ci

exp
(
−k2/2MiT

)
, (37)
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where A = exp (−Mi/T ), and Ci = exp (µi/T ) with µi being the chemical potential of baryon

species i, which is related to the number density ni as

ni = 2A
(
Ci − 1

Ci

) (
MiT

2π

)3/2

. (38)

The thermodynamical quantities can be approximated as

εi = 2A
(
Ci +

1

Ci

) (
MiT

2π

)3/2 (
3

2
T

)
, (39)

pi = 2A
(
Ci +

1

Ci

) (
MiT

2π

)3/2

T, (40)

si = 2A
[
5

2

(
Ci +

1

Ci

)
− Ci ln (ACi)− 1

Ci

ln
(

A

Ci

)] (
MiT

2π

)3/2

. (41)

The contribution from antiparticles is negligible when Ci À 1/Ci, where the above expressions

agree with the ideal-gas approximation.

4 Thomas-Fermi approximation

In the range, T < 14 MeV and ρB < 1014.2 g/cm3, where heavy nuclei may be formed in order

to lower the free energy, we perform the Thomas-Fermi calculation based on the work done

by Oyamatsu [8]. In this study, we take into account the contribution from Λ hyperons only

when the Λ fraction XΛ is larger than 10−5. In the range where the heavy nuclei are formed,

XΛ is quite small, therefore we neglect the contribution from Λ hyperons in the Thomas-Fermi

calculation. The non-uniform matter is modeled as a mixture of a single species of heavy nuclei,

alpha particles, and free nucleons that exist outside of nuclei, while the leptons can be treated

as uniform non-interacting particles separately. For the system with fixed proton fraction, the

leptons play no role in the minimization of the free energy. Hence we mainly pay attention to

baryon contribution in this calculation. Hereafter, we will not mention the leptons frequently,

while we should keep in mind that there exists a uniform lepton gas everywhere.

We assume that each heavy spherical nucleus is located in the center of a charge-neutral

cell consisting of a vapor of neutrons, protons, and alpha-particles. The nuclei form a body-

centered-cubic (BCC) lattice to minimize the Coulomb lattice energy. It is useful to introduce

the Wigner-Seitz cell to simplify the energy of a unit cell. The Wigner-Seitz cell is a sphere
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whose volume is the same as the unit cell in the BCC lattice. We define the lattice constant a

as the cube root of the cell volume. Then, we have

Vcell = a3 = NB/nB, (42)

where NB and nB are the baryon number per cell and the average baryon number density,

respectively. We define the baryon mass density as ρB = munB with mu being the atomic mass

unit. We calculate the Coulomb energy using this Wigner-Seitz approximation and add an

energy correction for the BCC lattice [8]. This energy correction is negligible unless the nuclear

size is comparable to the cell size.

We assume the nucleon distribution function ni(r) (i = p or n) in the Wigner-Seitz cell as

ni (r) =





(
nin

i − nout
i

) [
1−

(
r

Ri

)ti
]3

+ nout
i , 0 ≤ r ≤ Ri,

nout
i , Ri ≤ r ≤ Rcell,

(43)

where r represents the distance from the center of the nucleus and Rcell is the radius of the

Wigner-Seitz cell defined by the relation

Vcell ≡ 4π

3
R3

cell. (44)

The density parameters nin
i and nout

i are the densities at r = 0 and r ≥ Ri, respectively. The

parameters Ri and ti determine the boundary and the relative surface thickness of the heavy

nucleus.

For the distribution function of alpha-particle nα(r), which should decrease as r approaches

the center of the heavy nucleus, we assume

nα (r) =





−nout
α

[
1−

(
r

Rp

)tp
]3

+ nout
α , 0 ≤ r ≤ Rp,

nout
α , Rp ≤ r ≤ Rcell,

(45)

which could give nα(r = 0) = 0 and nα(r > Rp) = nout
α . Here we use the same parameters Rp

and tp for both proton and alpha-particle distribution functions in order to avoid the presence

of too many parameters in the minimization procedure. The parameters Rn and tn may be

somewhat different from Rp and tp due to the additional neutrons forming a neutron skin in the

surface region. For a system with fixed temperature T , proton fraction Yp, and baryon mass

density ρB, there are eight independent parameters among the ten variables, a, nin
n , nout

n , Rn,
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tn, nin
p , nout

p , Rp, tp, and nout
α . The thermodynamically favorable state is the one that minimizes

the free energy density with respect to these eight independent parameters.

In this model the free energy density contributed from baryons is given by

f = Fcell / a3 = ( Ecell − T Scell ) / a3, (46)

where the free energy per cell Fcell can be written as

Fcell = (Ebulk + Es + EC)− TScell = Fbulk + Es + EC . (47)

The bulk energy Ebulk, entropy Scell, and bulk free energy Fbulk are calculated by

Ebulk =
∫

cell
ε ( nn (r) , np (r) , nα (r) ) d3r, (48)

Scell =
∫

cell
s ( nn (r) , np (r) , nα (r) ) d3r, (49)

Fbulk =
∫

cell
f ( nn (r) , np (r) , nα (r) ) d3r. (50)

Here ε ( nn (r) , np (r) , nα (r) ), s ( nn (r) , np (r) , nα (r) ), and f ( nn (r) , np (r) , nα (r) ) are the

local energy density, entropy density, and free energy density at the radius r, where the system

can be considered as a mixed uniform matter of neutrons, protons, and alpha-particles. Note

that these local densities at each radius are calculated by treating neutrons and protons in the

RMF theory as described in Sec. 2 for the case of nn(r) + np(r) > 10−5 fm−3, while we can use

the method described in Sec. 3 for low density case of nn(r) + np(r) < 10−5 fm−3.

As for the surface energy term Es due to the inhomogeneity of the nucleon distribution, we

take the simple form

Es =
∫

cell
F0 | ∇ ( nn (r) + np (r) ) |2 d3r. (51)

The parameter F0 = 70 MeV · fm5 is determined by performing the Thomas-Fermi calculations

for finite nuclei so as to reproduce the gross properties of the nuclear mass, charge radii, and

the beta stability line as described in the Appendix of Ref. [8].

The Coulomb energy per cell EC is calculated using the Wigner-Seitz approximation with

an added correction term for the BCC lattice [8]

EC =
1

2

∫

cell
e [np (r) + 2nα (r)− ne] φ(r)d3r + 4EC , (52)
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where φ(r) represents the electrostatic potential calculated in the Wigner-Seitz approximation,

ne is the electron number density of a uniform electron gas (ne = Yp nB), and 4EC is the

correction term for the BCC lattice, which can be approximated as

4EC = CBCC
(Znone)

2

a
. (53)

Here a is the lattice constant as defined in Eq. (42), the coefficient CBCC = 0.006562 is taken

from Ref. [8], and Znon is the non-uniform part of the charge number per cell given by

Znon =
∫ Rp

0
(nin

p − nout
p − 2nout

α )


1−

(
r

Rp

)tp



3

4πr2dr. (54)

Because of the long-range nature of the Coulomb interaction, the Coulomb energy will depend

on the lattice type. This dependence was discussed in more detail in Ref. [8]. The system

prefers the BCC lattice because the BCC lattice gives the lowest Coulomb energy.

5 Calculation procedure in detail

We calculate the EOS table in the range mentioned in Sec. 1. For each T , Yp, and ρB, we

perform the minimization of the free energy for non-uniform matter using the Thomas-Fermi

method described in Sec. 4. We also do the minimization for uniform matter with respect to

converting two protons and two neutrons into an alpha-particle, in which there is only one

independent parameter. Here, the phase of heavy nuclei formed together with free nucleons

and alpha-particles is referred to as non-uniform matter, while the phase of baryons mixed with

alpha-particles without heavy nuclei is referred to as uniform matter. By comparing the free

energy of non-uniform matter with that of uniform matter, we determine the most favorable

state of nuclear matter at this T , Yp, and ρB. The density of the phase transition between

uniform matter and non-uniform matter depends on both T and Yp. The non-uniform matter

phase can exist only in the low temperature range (T < 14 MeV).

Λ hyperons may play a role at high density, and the Λ hyperon fraction increases as the

temperature increases. We take into account the contribution of Λ hyperons only when the Λ

hyperon fraction is larger than 10−5. The Λ hyperon fraction is determined by the equilibrium

condition µn = µΛ.
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We construct the EOS table in three dimensions (T , Yp, and ρB). We first fix T , and then

fix Yp and ρB. We finish the following steps in order to work out an EOS table with fixed T

where the non-uniform matter phase exists.

• 1 calculate input table in the RMF theory for the use of minimization

• 2 do minimization for uniform matter at low density

• 3 do minimization for non-uniform matter at medium density

• 4 calculate the RMF result for uniform matter without alpha-particles at high density

• 5 determine the phase transition and connect the free energy

• 6 calculate the pressure and chemical potentials from the free energy

• 7 construct the finial EOS table at this T

Now, we explain each step in more detail.

• 1 The calculation of the minimization procedure needs the free energy per baryon as a

function of nn and np as input table, and this input table should be big enough in order to get

good numerical accuracy in doing linear approximation. We calculate this input table in the

RMF theory which can describe the homogeneous matter of protons and neutrons. This input

table covers the following range

Yp = np

nn+np
from 0.0 to 0.5 mesh = 0.0005 point = 1001

nB = nn + np (fm−3) from 0.000010 to 0.000100 mesh = 0.000001 point = 91

from 0.000110 to 0.001000 mesh = 0.000010 point = 90

from 0.001100 to 0.060000 mesh = 0.000100 point = 590

from 0.061000 to 0.160000 mesh = 0.001000 point = 100

The density meshes are determined by the requirement to get good accuracy for the minimiza-

tion results. In this input table, we list the quantities of the energy per baryon E and the

entropy per baryon S. The free energy per baryon can be obtained by F = E − TS. We note

that the data at nn +np > 0.16 fm−3 is not necessary for the minimization procedure, while the

ideal-gas approximation is used to describe neutrons and protons when nn + np < 10−5 fm−3.
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• 2 At low density and finite temperature, the thermodynamically favorable state might be

a uniform matter which is a mixed gas of baryons and alpha-particles. For high temperature

(T > 16 MeV), the Λ hyperon fraction is larger than 10−5 at low density, therefore we take into

account the contribution of Λ hyperons in this range. For each Yp and ρB, we do minimization

in order to find out the alpha-particle fraction having the minimum free energy. Since nB =

np +nn +nΛ +4nα and Yp = (np +2nα)/nB are fixed in this case, there is only one independent

parameter, the alpha-particle fraction Xα = 4nα/nB, in this minimization procedure.

• 3 The non-uniform matter phase exists in some middle density range where the heavy

nuclei can be formed in order to lower the free energy. The starting density of non-uniform

matter phase depends on the temperature strongly, while the ending density is nearly indepen-

dent of the temperature. Both of them have a weak dependence on Yp. We first try to find

out the starting density at T , and then calculate the non-uniform matter results in this range

by using the minimization codes with respect to some independent parameters as described in

Sec. 4. Actually, we have to use a few codes to do this calculation because of the numerical

difficulty in the minimization procedure. As the density ρB increases with fixed T and Yp, the

heavy nucleus fraction increases, while the free nucleon fractions and alpha-particle fraction

decrease. When one of them decreases to a small value of about 10−5, it brings difficulty in

the minimization code, and lose good accuracy in the results. In this case, we use another

code which takes this composition out by deleting one independent parameter. It may run into

difficulty again as the density increases, and then we delete one more parameter. We list all

codes used in this procedure in Table 2. We determine which code should be used by com-

paring the free energies, and choose the one with the lowest free energy. Generally speaking,

the heavy nuclei use up free protons (Yp < 0.45) or free neutrons (Yp > 0.45) quickly after the

non-uniform matter appears. The alpha-particles will disappear as the density increases, and

then free neutrons (Yp < 0.45) or free protons (Yp > 0.45) disappear. Finally, only heavy nuclei

are formed without free particles outside (this pure nucleus phase does not occur at Yp < 0.3).

When T > 4 MeV, the calculation becomes relatively easy because the favorable state is always

the one including all compositions. As the temperature increases, the heavy nucleus fraction

decreases, and it disappears completely when T > 14 MeV.
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Table 2: The minimization codes for the non-uniform matter phase

code compositions of non-uniform matter parameter
name number

npah free neutrons, free protons, alpha particles, heavy nuclei 8

pah free protons, alpha particles, heavy nuclei 7

nah free neutrons, alpha particles, heavy nuclei 7

nph free neutrons, free protons, heavy nuclei 7

nh free neutrons, heavy nuclei 6

ph free protons, heavy nuclei 6

ah alpha particles, heavy nuclei 6

h heavy nuclei 5

• 4 As the density ρB increases beyond 1014.2 g/cm3, the non-uniform matter phase disap-

pears, and it becomes a homogeneous matter of baryons with less alpha-particles. The alpha-

particle fraction Xα decreases as the density ρB increases. We switch off the alpha-particle

degree of freedom when Xα < 10−4, and use the RMF code to calculate the results of uniform

matter without alpha-particles in the high density range.

• 5 We determine the phase transitions in the whole density range at each Yp with fixed

T by comparing the free energies calculated with the uniform matter codes and non-uniform

matter codes listed in Table 2. All the coming results in steps 2, 3, and 4 are the inputs for

the judging code, and we get two important output files from it, EOS.FE and EOS.TAB. In

EOS.FE, the free energy per particle F is written as a function of Yp and ρB with fixed T ,

which can be used for calculating pressure and chemical potentials. In EOS.TAB, all quantities

that are needed for the finial EOS table are included.

• 6 We calculate pressure and chemical potentials through the following thermodynamical

relations

p =
[
n2

B(∂F/∂nB)
]
T,Yp

, (55)

µn = [ ∂(nBF )/∂nn+Λ ]T,np
, (56)
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µp = [ ∂(nBF )/∂np ]T,nn+Λ
, (57)

where F is the free energy per baryon written in EOS.FE obtained in step 5, while nB is

the baryon number density related to the baryon mass density as ρB = munB with mu =

931.494 MeV being the atomic mass unit [9]. np = YpnB is the proton number density, while

nn+Λ = (1 − Yp)nB is the total number density of neutrons and Λ hyperons with µn = µΛ.

The numerical derivatives are calculated by a five-point differentiation method. In the high

density range where alpha-particles have been switched off, we take the exact results calculated

in the RMF theory instead of the numerical differentiations. The output files of this step are

PRE.TAB for pressure and CHE.TAB for chemical potentials.

• 7 We combine the files EOS.TAB, PRE.TAB, and CHE.TAB in order to get the finial

EOS table at this T . Due to the use of many codes listed in Table 2 for the non-uniform matter

phase, some fractions might be equal to zero at some densities in the file EOS.TAB. This is

because these compositions have been switched off for getting good accuracy. However, we

know that the fraction should be a small value at finite temperature if the chemical potential

is finite. In this case, we calculate the fraction Xi by the chemical potential µi and write it in

the finial EOS table,

Xi = (nout
i V out)/(nBVcell), (58)

where Vcell is the cell volume as defined in Eq. (42), while V out = Vcell − 4π
3

R3
A is the volume

outside the heavy nucleus with RA being the maximum of Rp and Rn considered as the boundary

of the heavy nucleus. nout
i is the free neutron number density (i = n) or free proton number

density (i = p). For alpha-particles (i = α), nout
i should be four times of the alpha-particle

number density outside the heavy nucleus, because there are two protons and two neutrons in

an alpha-particle. The number densities outside the heavy nucleus can be obtained through

the relations,

nout
n = 2

(
MT

2π

)3/2

exp(
µn

T
), (59)

nout
p = 2

(
MT

2π

)3/2

exp(
µp

T
), (60)

nout
α = 8

(
MT

2π

)3/2

exp(
µα + Bα

T
), (61)
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where µα = 2µn + 2µp is based on the equilibrium condition. The finial EOS table at this T is

the output file of this step.

We have to go through these steps for each T where the non-uniform matter phase exists. We

also add the results for zero temperature case (T = 0). There are two main differences between

T = 0 and T 6= 0 cases. (1) At T = 0, there are no alpha-particles and free protons (or free

neutrons) outside the heavy nucleus, so we need not calculate so many codes listed in Table 2.

The starting density of the non-uniform matter phase is below 105 g/cm3 at T < 0.4 MeV, so

we can skip step 2 in this case. (2) The ideal-gas approximation is not available at T = 0, so we

use a function Ck2
f based on the Fermi-gas model to express the nonrelativistic kinetic energy

at low density. Note that the free energy at T = 0 is equal to the internal energy, because the

entropy is equal to zero in this case.

When the non-uniform matter phase disappears at high temperature, the calculation be-

comes relatively easy. We can skip step 3 which is the most complicated part in this calculation.

As the temperature increases, the alpha-particle contribution gets less and less. We completely

neglect the alpha-particle contribution at T > 100 MeV. On the other hand, the alpha-particle

contribution is also dependent on the density. As the density ρB increases, the alpha-particle

fraction Xα increases, but it drops rapidly at high density due to the finite volume effect of

alpha-particles. In the high temperature range 14 MeV < T < 100 MeV, we take into account

the alpha-particle contribution from ρB = 1010 g/cm3 to the density where Xα becomes smaller

than 10−4. If Xα is smaller than 10−4 in the whole density range, we neglect the alpha-particle

contribution and calculate Xα by the chemical potential µα. The difference between the ideal-

gas approximation and the RMF results is mainly due to the relativistic effect, and it increases

as the temperature increases. We use the RMF theory to perform the calculation in the whole

density range at T > 30 MeV.

At the end, we calculate the results for the case of Yp = 0. There are only neutrons and Λ

hyperons with µn = µΛ in this case, so we can use the RMF theory to perform the calculation

in the whole density range, and get the final EOS table for Yp = 0.
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6 Resulting EOS table

In this section, we explain the resulting EOS table and list the definitions of the physical

quantities tabulated. We provide the resulting EOS by three tables, which are named as

(1) eos3.tab (main EOS table, size: 157.60 MB)

• temperature T [MeV]: −1.0 ≤ log10(T ) ≤ 2.6; mesh of log10(T ) = 0.04

• proton fraction Yp: 0.01 ≤ Yp ≤ 0.65; mesh of Yp = 0.01

• baryon mass density ρB [g/cm3]: 5.1 ≤ log10(ρB) ≤ 16.0; mesh of log10(ρB) = 0.1

(2) eos3.t00 (EOS at T = 0, the same range of Yp and ρB, size: 1.73 MB)

(3) eos3.yp0 (EOS at Yp = 0, the same range of T and ρB, size: 2.46 MB)

One can download them from the following websites:

http://physics.nankai.edu.cn/grzy/shenhong/EOS/index.html

http://www.rcnp.osaka-u.ac.jp/∼shen/

Generally speaking, there are two phases existing in the range covered by this EOS table.

The phase where heavy nuclei are formed is referred to as non-uniform matter, while the phase

without heavy nuclei is referred to as uniform matter. The phase transition can be found by

the variation of the heavy nucleus fraction between XA = 0 and XA 6= 0.

We write the EOS table in the following order: first fix T which is written at the beginning

of each block in the table, second fix Yp, third fix ρB. The blocks with different T are divided

by the string of characters ‘cccccccccccc’. For each T , Yp, and ρB, we write all quantities in one

line by the following order:

• (1) logarithm of baryon mass density: log10(ρB) [g/cm3]

• (2) baryon number density: nB [fm−3]

The baryon number density is related to the baryon mass density as ρB = munB with

mu = 931.494 MeV being the atomic mass unit taken from Ref. [9].

• (3) proton fraction: Yp

The proton fraction Yp of uniform matter is defined by

Yp =
np + 2nα

nB

=
np + 2nα

np + nn + nΛ + 4nα

, (62)
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where np is the proton number density, nn is the neutron number density, nΛ is the Λ

number density, nα is the alpha-particle number density, and nB is the baryon number

density. For non-uniform matter case, Yp is the average proton fraction defined by

Yp =
Np

NB

, (63)

where Np is the proton number per cell, and NB is the baryon number per cell given by

Np =
∫

cell
[ np (r) + 2nα (r) ] d3r, (64)

NB =
∫

cell
[ nn (r) + np (r) + 4nα (r) ] d3r. (65)

Here, np(r) and nn(r) are the proton and neutron density distribution function given by

Eq. (43), and nα(r) is the alpha-particle density distribution function given by Eq. (45).

Because the Λ hyperon fraction is very small in the non-uniform matter phase, We neglect

the contribution of Λ hyperons in this phase.

• (4) free energy per baryon: F [MeV]

The free energy per baryon is defined as relative to the free nucleon mass M = 938 MeV

in the TM1 parameter set as

F =
f

nB

−M. (66)

• (5) internal energy per baryon: Eint [MeV]

The internal energy per baryon is defined as relative to the atomic mass unit mu = 931.494

MeV as

Eint =
ε

nB

−mu. (67)

• (6) entropy per baryon: S [kB]

The entropy per baryon is related to the entropy density via

S =
s

nB

. (68)

• (7) mass number of the heavy nucleus: A

The mass number of the heavy nucleus is defined by

A =
∫ RA

0
[ nn (r) + np (r) ] 4πr2dr, (69)
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where nn(r) and np(r) are the density distribution functions given by Eq. (43), and RA is

the maximum of Rp and Rn, which is considered as the boundary of the heavy nucleus.

• (8) charge number of the heavy nucleus: Z

The charge number of the heavy nucleus is defined by

Z =
∫ RA

0
np (r) 4πr2dr. (70)

• (9) effective nucleon mass: M∗
N [MeV]

The effective nucleon mass is obtained in the RMF theory for uniform matter. In the

non-uniform matter phase, the effective nucleon mass is a function of space due to in-

homogeneity of the nucleon distribution, so it is meaningless to list the effective nucleon

mass for non-uniform matter. We replace the effective nucleon mass M∗
N by the free

nucleon mass M in the non-uniform matter phase.

• (10) free neutron fraction: Xn

The free neutron fraction is given by

Xn = (nout
n V out)/(nBVcell), (71)

where Vcell is the cell volume as defined in Eq. (42), V out = Vcell − 4π
3

R3
A is the volume

outside the heavy nucleus, nout
n is the free neutron number density outside the heavy

nucleus, and nB is the average baryon number density.

• (11) free proton fraction: Xp

The free proton fraction is given by

Xp = (nout
p V out)/(nBVcell), (72)

where nout
p is the free proton number density outside the heavy nucleus.

• (12) alpha-particle fraction: Xα

The alpha-particle fraction is defined by

Xα = 4Nα/(nBVcell), (73)
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where Nα is the alpha-particle number per cell obtained by

Nα =
∫

cell
nα (r) d3r, (74)

and nα(r) is the alpha-particle density distribution function given by Eq. (45).

• (13) heavy nucleus fraction: XA

The heavy nucleus fraction is defined by

XA = A/(nBVcell), (75)

where A is the mass number of the heavy nucleus as defined in Eq. (69).

• (14) pressure: p [MeV/fm3]

The pressure is calculated through the thermodynamical relation

p =
[
n2

B(∂F/∂nB)
]
T,Yp

. (76)

• (15) chemical potential of the neutron: µn [MeV]

The chemical potential of the neutron relative to the free nucleon mass M is calculated

through the thermodynamical relation

µn = [ ∂(nBF )/∂nn+Λ ]T,np
. (77)

Here nn+Λ = (1− Yp) nB.

• (16) chemical potential of the proton: µp [MeV]

The chemical potential of the proton relative to the free nucleon mass M is calculated

through the thermodynamical relation

µp = [ ∂(nBF )/∂np ]T,nn+Λ
. (78)

Here np = Yp nB.

• (17) effective Λ mass: M∗
Λ [MeV]

The effective Λ mass is obtained in the RMF theory for uniform matter. We replace the

effective Λ mass by the free Λ mass MΛ = 1115.7 MeV when the Λ hyperon is not taken

into account.
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• (18) Λ hyperon fraction: XΛ

The Λ hyperon fraction is given by

XΛ = nΛ/nB, (79)

where nΛ is the Λ number density in the uniform matter phase.

We have done the following check for the EOS table:

(1) the consistency of the fractions,

Xp + Xn + XΛ + Xα + XA = 1. (80)

(2) the consistency of the relation between F , Eint, and S,

F = Eint − TS + mu −M. (81)

(3) the consistency of the thermodynamical quantities,

F = µn(1− Yp) + µpYp − p

nB

. (82)

In general, these consistency relations can be satisfied within a few thousandths. Physical

constants to convert units are taken from Ref. [9].

7 Suggestions for using the EOS table

This relativistic EOS table is designed for use in supernova simulations, so we perform the

calculation at each T , Yp, and ρB. Comparing with EOS2, we take into account the contribution

of Λ hyperons in EOS3 when the Λ hyperon fraction is larger than 10−5. We note that Λ

hyperons can play a role only in the uniform matter phase.

In order to perform the minimization of the free energy for non-uniform matter, we have

to parameterize the nucleon distributions, so that some quantities in the EOS table like A,

Z, Xn, Xp, Xα, and XA are dependent on this parameterization method. One should keep in

mind their definitions when these quantities are used. We suggest users pay more attention

to the thermodynamical quantities like F , Eint, S, p, µn, and µp, which are supposed not to

be sensitive to the parameterization method. The thermodynamical quantities are found to be
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more smooth in the resulting EOS, while the use of many codes in Table 2 may bring some

fluctuations in the fractions, especially in the temperature range 1 MeV < T < 4 MeV, where

the connection is very complicated.

We hope this EOS table can be used in your calculation successfully. We emphasize again

that this EOS table includes only baryon contributions, so you have to add the lepton contri-

butions when you use it.

References

[1] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Prog. Theor. Phys. 100, 1013 (1998).

[2] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Nucl. Phys. A637, 435 (1998).

[3] H. Shen, F. Yang, and H. Toki, Prog. Theor. Phys. 115, 325 (2006).

[4] Y. Sugahara and H .Toki, Nucl. Phys. A579, 557 (1994).

[5] D. Hirata, K. Sumiyoshi, B. V. Carlson, H. Toki, and I. Tanihata, Nucl. Phys. A609,

131 (1996).

[6] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

[7] J. M. Lattimer and F. D. Swesty, Nucl. Phys. A535, 331 (1991).

[8] K. Oyamatsu, Nucl. Phys. A561, 431 (1993).

[9] C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008).

23


